Skip to main content

Alternative Diffusion Anisotropy Metric from Reduced MRI Acquisitions

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 414 Accesses

Abstract

A novel diffusion anisotropy metric is presented. It is based on dissimilarity between the acquired diffusion signal and its isotropic equivalent. Using the inner product of signals, a closed form expression is obtained, which allows its computation using spherical harmonics from a reduced set of acquired data, compatible with most popular diffusion MRI acquisition protocols. Results show that the proposed metric (1) is able to discriminate among different microstructure scenarios; (2) shows a robust behaviour in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ida.loni.usc.edu/login.jsp.

  2. 2.

    https://www.nitrc.org/frs/?group_id=835.

  3. 3.

    www.mrtrix.org.

References

  1. Aja-Fernández, S., Pieciak, T., Tristán-Vega, A., Vegas-Sánchez-Ferrero, G., Molina, V., de Luis-García, R.: Scalar diffusion-MRI measures invariant to acquisition parameters: a first step towards imaging biomarkers. Magn. Reson. Imag. 54, 194–213 (2018)

    Google Scholar 

  2. Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60(2), 439–448 (2008)

    Article  Google Scholar 

  3. Atkinson-Clement, C., Pinto, S., Eusebio, A., Coulon, O.: Diffusion tensor imaging in Parkinson’s disease: review and meta-analysis. Neuroimage: Clin. 16, 98–110 (2017)

    Article  Google Scholar 

  4. Avram, A.V., Sarlls, J.E., Barnett, A.S., Özarslan, E., Thomas, C., Irfanoglu, M.O., Hutchinson, E., Pierpaoli, C., Basser, P.J.: Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. NeuroImage 127, 422–434 (2016)

    Article  Google Scholar 

  5. Basser, P.J.: Relationships between diffusion tensor and q-space MRI. Magn. Reson. Med. 47(2), 392–397 (2002)

    Article  Google Scholar 

  6. Basser, P., Pierpaoli, C.: Microstructural features measured using diffusion tensor imaging. J. Magn. Reson. B 111(3), 209–219 (1996)

    Article  Google Scholar 

  7. Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003)

    Article  Google Scholar 

  8. Callaghan, P., Eccles, C., Xia, Y.: Nmr microscopy of dynamic displacements: k-space and q-space imaging. J. Phys. E: Sci. Instrum. 21(8), 820–822 (1988)

    Article  Google Scholar 

  9. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion profile estimation from high angular resolution diffusion images: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)

    Google Scholar 

  10. Gallager, R.G.: Principles of Digital Communication. Cambridge University Press Cambridge, Cambridge, UK (2008)

    Google Scholar 

  11. Hansen, B., Jespersen, S.N.: Kurtosis fractional anisotropy, its contrast and estimation by proxy. Sci. Rep. 6, 23999 (2016)

    Article  Google Scholar 

  12. Mori, S., Wakana, S., Van Zijl, P.C., Nagae-Poetscher, L.: MRI Atlas of Human White Matter. Elsevier (2005)

    Google Scholar 

  13. Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., Irfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)

    Article  Google Scholar 

  14. Özarslan, E., Sepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the Diffusion Orientation Transform (DOT). NeuroImage 31, 1086–1103 (2006)

    Google Scholar 

  15. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance, and entropy. Magn. Reson. Med. 53(4), 866–876 (2005)

    Article  Google Scholar 

  16. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Article  Google Scholar 

  17. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)

    Article  Google Scholar 

  18. Westin, C.F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Processing and visualization for diffusion tensor MRI. Med. Image Anal. 6(2), 93–108 (2002)

    Article  Google Scholar 

  19. Ziegler, E., Rouillard, M., André, E., Coolen, T., Stender, J., Balteau, E., Phillips, C., Garraux, G.: Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson’s disease. Neuroimage 99, 498–508 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Ciencia e Innovación of Spain with research grants RTI2018-094569-B-I00 and PRX18/00253 (Estancias de profesores e investigadores senior en centros extranjeros).

The authors acknowledge Rutger H.J. Fick for providing his personal implementation of the MAP-MRI to estimate the PA. The authors are also grateful to Maryam Afzali from Cardiff University Brain Research Imaging Center for interesting discussion about MAP-MRI model and the multichamber experiment.

Data collection and sharing for this work was provided by (1) the Human Connectome Project (HCP; Principal Investigators: Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro Imaging at the University of Southern California; (2) the High-quality diffusion-weighted imaging of Parkinson’s disease data base, Cyclotron Research Centre, University of Liège.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Aja-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aja-Fernández, S., Tristán-Vega, A., de Luis-García, R., Jones, D.K. (2020). Alternative Diffusion Anisotropy Metric from Reduced MRI Acquisitions. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_2

Download citation

Publish with us

Policies and ethics