Skip to main content

Investigation of Changes in Anomalous Diffusion Parameters in a Mouse Model of Brain Tumour

  • Conference paper
  • First Online:
Computational Diffusion MRI

Abstract

In this paper, we investigate anomalous diffusion models in a mouse model of glioblastoma, a grade IV brain tumour, and study how the anomalous diffusion model parameters reflect the change in tumour tissue microstructure. Diffusion-weighted MRI data with multiple b-values at 9.4 T was acquired from mice bearing U87 brain tumour cells at four time points. Voxel-level fitting of the MRI data was performed on the classical mono-exponential model, and four anomalous diffusion models, namely, the stretched exponential model, the sub-diffusion model, the continuous time random walk model and the fractional Bloch-Torrey equation. The performance of the anomalous diffusion parameters for differentiating the three-concentric layers of tumour tissue (i.e., core; intermediate zone; peripheral and hyper-vascularised tumour layer) was evaluated with multinomial logistic regression and multi-class classification analysis. We found that parameter \(\alpha \) from the stretched exponential model, parameter \(\upbeta \) from the sub-diffusion model and parameter \(\upbeta \) from the continuous time random walk model provide a clear delineation of the three layers of tumour tissue. The analysis revealed that the combination of diffusion coefficient D and anomalous diffusion parameter (\(\alpha \) and/or \(\upbeta \)) greatly improved the classification power in terms of F1-scores compared with the current approach in clinics, in which D is used alone. Hence, our mouse brain tumour study demonstrated that anomalous diffusion model parameters are useful for differentiating different tumour layers and normal brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike, H.: Akaike’s information criterion. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-04898-2_110

  2. Bennett, K., Hyde, J., Schmainda, K.: Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn. Reson. Med. 56(2), 235–239 (2006). https://doi.org/10.1002/mrm.20960

  3. Bennett, K., Schmainda, K., Bennett, R., Rowe, D., Lu, H., Hyde, J.: Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn. Reson. Med. 50(4), 727–734 (2003). https://doi.org/10.1002/mrm.10581

  4. Branch, M., Coleman, T., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999). https://doi.org/10.1137/s1064827595289108

  5. Bueno-Orovio, A., Teh, I., Schneider, J.E., Burrage, K., Grau, V.: Anomalous diffusion in cardiac tissue as an index of myocardial microstructure. IEEE Trans. Med. Imaging 35(9), 2200–2207 (2016). https://doi.org/10.1109/TMI.2016.2548503

  6. Coleman, T., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996). https://doi.org/10.1137/0806023

  7. Eliazar, I., Shlesinger, M.: Fractional motions. Phys. Rep. 527(2), 101–129 (2013). https://doi.org/10.1016/j.physrep.2013.01.004

  8. Fritz, L., Dirven, L., Reijneveld, J., Koekkoek, J., Stiggelbout, A., Pasman, H., Taphoorn, M.: Advance care planning in glioblastoma patients. Cancers 8(11), 102 (2016). https://doi.org/10.3390/cancers8110102

  9. Hall, M.: Continuity, the Bloch-Torrey equation, and diffusion MRI (2016). arXiv:1608.02859

  10. Hall, M., Barrick, T.: From diffusion-weighted mri to anomalous diffusion imaging. Magn. Reson. Med. 59, 447–455 (2008). https://doi.org/10.1002/mrm.21453

  11. Iima, M., Reynaud, O., Tsurugizawa, T., Ciobanu, L., Li, J., et al.: Characterization of glioma microcirculation and tissue features using intravoxel incoherent motion magnetic resonance imaging in a rat brain model. Invest. Radiol. 49(7), 485–490 (2014). https://doi.org/10.1097/rli.0000000000000040

  12. Ingo, C., Magin, R., Colon-Perez, L., Triplett, W., Mareci, T.: On random walks and entropy in diffusion-weighted magnetic resonance imaging studies of neural tissue. Magn. Reson. Med. 71(2), 617–627 (2014). https://doi.org/10.1002/mrm.25153

  13. Karaman, M., Sui, Y., Wang, H., Magin, R., Li, Y., Zhou, X.: Differentiating low- and high-grade pediatric brain tumors using a continuous-time random-walk diffusion model at high b-values. Magn. Reson. Med. 76(4), 1149–1157 (2016). https://doi.org/10.1002/mrm.26012

  14. Karaman, M., Wang, H., Sui, Y., Engelhard, H., Li, Y., Zhou, X.: A fractional motion diffusion model for grading pediatric brain tumors. NeuroImage: Clin. 12, 707–714 (2016). https://doi.org/10.1016/j.nicl.2016.10.003

  15. Lin, G.: An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions. J. Magn. Reson. 259, 232–240 (2015). https://doi.org/10.1016/j.jmr.2015.08.014

  16. Lin, G.: Analyzing signal attenuation in PFG anomalous diffusion via a non-Gaussian phase distribution approximation approach by fractional derivatives. J. Chem. Phys. 145(19), 194202 (2016). https://doi.org/10.1063/1.4967403

  17. Lin, G.: The exact PFG signal attenuation expression based on a fractional integral modified-Bloch equation (2017). arXiv:1706.02026

  18. Lin, G.: Fractional differential and fractional integral modified-Bloch equations for PFG anomalous diffusion and their general solutions (2017). arXiv:1702.07116

  19. Madsen, H., Hellwinkel, J., Graner, M.: Clinical trials in glioblastoma—designs and challenges. In: Lichtor, T. (ed.) Molecular Considerations and Evolving Surgical Management Issues in the Treatment of Patients with a Brain Tumor, Chap. 13. IntechOpen (2015). https://doi.org/10.5772/58973

  20. Magin, R., Abdullah, O., Baleanu, D., Zhou, X.: Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190(2), 255–270 (2008). https://doi.org/10.1016/j.jmr.2007.11.007

  21. Persano, L., Rampazzo, E., Della Puppa, A., Pistollato, F., Basso, G.: The three-layer concentric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic implications. Sci. World J. 11, 1829–1841 (2011). https://doi.org/10.1100/2011/736480

  22. Pistollato, F., Abbadi, S., Rampazzo, E., Persano, L., Della Puppa, A., Frasson, C., Sarto, E., Scienza, R., D’avella, D., Basso, G.: Intratumoral hypoxic gradient drives stem cells distribution and mgmt expression in glioblastoma. Stem cells 28(5), 851–862 (2010). https://doi.org/10.1002/stem.415

  23. Podlubny, I.: Fractional Differential Equations. Academic Press (1998)

    Google Scholar 

  24. Reiter, D., Magin, R., Li, W., Trujillo, J., Velasco, M., Spencer, R.: Anomalous T2 relaxation in normal and degraded cartilage. Magn. Reson. Med. 76(3), 953–962 (2016). https://doi.org/10.1002/mrm.25913

  25. Sui, Y., Wang, H., Liu, G., Damen, F.W., Wanamaker, C., Li, Y., Zhou, X.J.: Differentiation of low-and high-grade pediatric brain tumors with high b-value diffusion-weighted mr imaging and a fractional order calculus model. Radiology 277(2), 489–496 (2015). https://doi.org/10.1148/radiol.2015142156

  26. Torrey, H.: Bloch equations with diffusion terms. Phys. Rev. 104(3), 563–565 (1956). https://doi.org/10.1103/physrev.104.563

  27. Wang, Z., Dabrosin, C., Yin, X., Fuster, M., Arreola, A., et al.: Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 35, S224–S243 (2015). https://doi.org/10.1016/j.semcancer.2015.01.001

  28. Yu, Q., Reutens, D., O’Brien, K., Vegh, V.: Tissue microstructure features derived from anomalous diffusion measurements in magnetic resonance imaging. Hum. Brain Mapp. 38(2), 1068–1081 (2017). https://doi.org/10.1002/hbm.23441

  29. Yu, Q., Reutens, D., Vegh, V.: Can anomalous diffusion models in magnetic resonance imaging be used to characterise white matter tissue microstructure? NeuroImage 175, 122–137 (2018). https://doi.org/10.1016/j.neuroimage.2018.03.052

Download references

Acknowledgments

Qianqian Yang acknowledges the Australian Research Council for the Discovery Early Career Researcher Award (DE150101842). Simon Puttick acknowledges the Cure Brain Cancer Foundation Innovation Grant (R14/2173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q., Puttick, S., Bruce, Z.C., Day, B.W., Vegh, V. (2020). Investigation of Changes in Anomalous Diffusion Parameters in a Mouse Model of Brain Tumour. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_14

Download citation

Publish with us

Policies and ethics