Skip to main content

Convolutional Neural Network on DTI Data for Sub-cortical Brain Structure Segmentation

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 445 Accesses

Abstract

Convolutional neural networks have become a powerful tool for MRI brain analysis and are the state-of-the-art in the matter of brain structure segmentation. Despite the deep learning power and advantages, most of the work is still done in classical methods, such as atlas based segmentation. The majority of those methods also uses only anatomical MRI sequences, e.g. T1- and T2-weighted images, however, other sequences of MRI could lead to much more interesting results. In this work, we are proposing the use of Convolutional Neural Networks, in a multitask approach, which is a tendency to the deep learning community, in order to segment a variety of brain structures. We used over 100 subjects with 32 directions diffusion data and manual annotation, drawn on T1 images, of 8 different brain structures. We have tested variations in the CNN architecture and input data configurations to ensure the best performance. Our results show the results of a particular CNN to segment sub-cortical structures such as Ventricle, Thalamus, Putamen, and Caudate Nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bui, T.D., Shin, J., Moon, T.: 3d densely convolutional networks for volumetric segmentation (2017). arXiv:1709.03199

  2. Carmo, D., Silva, B., Yasuda, C., Rittner, L., Lotufo, R.: Extended 2d consensus hippocampus segmentation. In: International Conference on Medical Imaging with Deep Learning (2019)

    Google Scholar 

  3. Chang, H.H., Hsieh, C.C.: Brain segmentation in mr images using a texture-based classifier associated with mathematical morphology. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3421–3424. IEEE (2017)

    Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 424–432. Springer, Berlin (2016)

    Google Scholar 

  5. Cover, G., Pereira, M., Bento, M., Appenzeller, S., Rittner, L.: Data-driven corpus callosum parcellation method through diffusion tensor imaging. IEEE Access 5, 22421–22432 (2017). https://doi.org/10.1109/ACCESS.2017.2761701

  6. Duarte, J.M., Santos, J.B.d., Melo, L.C.: Comparison of similarity coefficients based on rapd markers in the common bean. Genet. Mol. Biol. 22(3), 427–432 (1999)

    Google Scholar 

  7. Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Reson. Med. 55(1), 136–146 (2006). https://doi.org/10.1002/mrm.20741

  8. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

  9. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., Group, B.D.C., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011). https://doi.org/10.1016/j.neuroimage.2010.07.033

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015). arXiv:1502.03167

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015

  13. Kingma, D.P., Ba, J.: Adam: A method for optimization (2014). arXiv:1412.6980

  14. Kushibar, K., Valverde, S., González-Villà, S., Bernal, J., Cabezas, M., Oliver, A., Lladó, X.: Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Med. Image Anal. 48, 177–186 (2018). https://doi.org/10.1016/j.media.2018.06.006

  15. Manjn, J.V., Coup, P.: volbrain: An online mri brain volumetry system. Frontiers Neuroinform. 10, 30 (2016). https://doi.org/10.3389/fninf.2016.00030

  16. Mehta, R., Sivaswamy, J.: M-net: a convolutional neural network for deep brain structure segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 437–440. IEEE (2017)

    Google Scholar 

  17. Pomiecko, K., et al.: 3d convolutional neural network segmentation of white matter tract masks from mr diffusion anisotropy maps. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1–5 (2019). https://doi.org/10.1109/ISBI.2019.8759575

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Berlin (2015)

    Google Scholar 

  19. Wachinger, C., Reuter, M., Klein, T.: Deepnat: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170, 434–445 (2018)

    Article  Google Scholar 

  20. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation. In: International MICCAI Brainlesion Workshop, pp. 61–72. Springer, Berlin (2018)

    Google Scholar 

  21. Warach, S., Chien, D., Li, W., Ronthal, M., Edelman, R.R.: Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42(9), 1717–1717 (1992). https://doi.org/10.1212/WNL.42.9.1717

  22. Warach, S., Gaa, J., Siewert, B., Wielopolski, P., Edelman, R.R.: Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann. Neurol. 37(2), 231–241 (1995). https://doi.org/10.1002/ana.410370214

  23. Winzeck, S., et al.: Ensemble of convolutional neural networks improves automated segmentation of acute ischemic lesions using multiparametric diffusion-weighted mri. Am. J. Neuroradiol. (2019). https://doi.org/10.3174/ajnr.A6077

  24. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network (2015). arXiv:1505.00853

  25. Yasuda, C., et al.: Dynamic changes in white and gray matter volume are associated with outcome of surgical treatment in temporal lobe epilepsy. Neuroimage 49(1), 71–79 (2010)

    Article  Google Scholar 

  26. Van der Lijn, F., et al.: Automated brain structure segmentation based on atlas registration and appearance models. IEEE Trans. Med. Imaging 31(2), 276–286 (2011). https://doi.org/10.1109/TMI.2011.2168420

Download references

Acknowledgments

This project was supported by National Council for Scientific and Technological Development (CNPq 159829/2017-8 and 308311/2016-7) and Teaching, Research and Extension Support Fund (FAEPEX-UNICAMP). Diedre Carmo thanks FAPESP (2018/00186-0) for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Pinheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinheiro, G.R., Carmo, D.S., Yasuda, C., Lotufo, R.A., Rittner, L. (2020). Convolutional Neural Network on DTI Data for Sub-cortical Brain Structure Segmentation. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_12

Download citation

Publish with us

Policies and ethics