Skip to main content

Li-Ion Energy Levels, Li-Ion Transfer and Electrode Potential

  • Chapter
  • First Online:
Surface Science of Intercalation Materials and Solid Electrolytes

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 392 Accesses

Abstract

Interface formation of ionic materials is closely related to the bulk properties of the materials or molecules in contact. In the previous chapters, interlayer formation has been discussed with a focus on electronic states and electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier, J.: Prog. Solid State Ch. 23(3), 171 (1995)

    Article  Google Scholar 

  2. Maier, J.: Solid State Ionics 143(1), 17 (2001)

    Article  Google Scholar 

  3. Maier, J.: Physical Chemistry of Ionic Materials. John Wiley and Sons Ltd, Chichester (2004)

    Book  Google Scholar 

  4. Hausbrand, R., et al.: Thin Solid Films 643, 43 (2017)

    Article  ADS  Google Scholar 

  5. Doblhofer, K.: Thin polymer films on electrodes: a physicochemical approach. In: Lipkowski, J., Ross, P.N. (eds.) Electrochemistry of Novel Materials. VCH Publishers, Inc., New York (1994)

    Google Scholar 

  6. Hausbrand, R.: Charge transfer and surface layer formation at Li-ion intercalation electrodes. Habilitation thesis, Technical University of Darmstadt (2018)

    Google Scholar 

  7. Kittel, C.: EinfĂ¼hrung in die Festkörperphysik. R. Oldenburg Verlag GmbH, MĂ¼nchen (1993)

    Google Scholar 

  8. HĂ¼fner, S.: Photoelectron Spectroscopy. Springer, Berlin (2003)

    Book  Google Scholar 

  9. Fingerle, M., et al.: Chem. Mater. 29(18), 7675 (2017)

    Article  Google Scholar 

  10. Freysoldt, C., et al.: Rev. Mod. Phys. 86(1) (2014)

    Google Scholar 

  11. Sadowski, M., et al.: Solid State Ionics 319, 53 (2018)

    Article  Google Scholar 

  12. Sicolo, S., et al.: J. Power Sources 354, 124 (2017)

    Article  ADS  Google Scholar 

  13. Swift, M. W., Qi, Y.: Phys. Rev. Lett. 122(16) (2019)

    Google Scholar 

  14. Stegmaier, S., et al.: Chem. Mater. 29(10), 4330 (2017)

    Article  Google Scholar 

  15. Sicolo, S., Albe, K.: J. Power Sources 331, 382 (2016)

    Article  ADS  Google Scholar 

  16. Koyama, Y., et al.: Chem. Mater. 24(20), 3886 (2012)

    Article  Google Scholar 

  17. Hoang, K., Johannes, M.D.: J. Mater. Chem. A 2(15), 5224 (2014)

    Article  Google Scholar 

  18. Schuld, S., et al.: J. Appl. Phys. 120(18) (2016)

    Google Scholar 

  19. Richardson, O.W.: The Emission of Electricity from Hot Bodies. Longmans, Green and Co., London (1916)

    Google Scholar 

  20. Wright, R.W.: Phys. Rev. 60, 465 (1941)

    Article  ADS  Google Scholar 

  21. Schuld, S., et al.: Int. J. Mass Spectrom. 435, 291 (2019)

    Article  Google Scholar 

  22. Schuld, S., et al.: Adv. Energy Mater. 8(18) (2018)

    Google Scholar 

  23. Schafer, M., et al.: Phys. Chem. Chem. Phys. 21(47), 26251 (2019)

    Article  Google Scholar 

  24. Maier, J.: Solid state electrochemistry I: Thermodynamics and kinetics of charge carriers in solids. In: Conway, B.E., et al. (ed.) Modern Aspects of Electrochemistry, vol. 38, p. 1. Academic/Plenum Publishers, New York (2005)

    Google Scholar 

  25. Liu, Y., et al.: J. Power Sources 454 (2020)

    Google Scholar 

  26. Landstorfer, M., et al.: Phys. Chem. Chem. Phys. 13(28), 12817 (2011)

    Article  Google Scholar 

  27. Rossi, M., et al.: Electrochim. Acta 258, 241 (2017)

    Article  Google Scholar 

  28. Danilov, D., et al.: J. Electrochem. Soc. 158(3), A215 (2011)

    Article  Google Scholar 

  29. Bonnefont, A., et al.: J. Electroanal. Chem. 500(1–2), 52 (2001)

    Article  Google Scholar 

  30. Bazant, M.Z., et al.: Siam. J. Appl. Math. 65(5), 1463 (2005)

    Article  MathSciNet  Google Scholar 

  31. Kilic, M.S., et al.: Phys. Rev. E 75(2) (2007)

    Google Scholar 

  32. Ganser, M., et al.: J. Electrochem. Soc. 166(4), H167 (2019)

    Article  Google Scholar 

  33. Raijmakers, L.H.J., et al.: Electrochim. Acta 330 (2020)

    Google Scholar 

  34. Gerischer, H., et al.: J. Electrochem. Soc. 141(9), 2297 (1994)

    Article  ADS  Google Scholar 

  35. Tonti, D., et al.: J. Phys. Chem. B 108, 16093 (2004)

    Article  Google Scholar 

  36. Precht, R., et al.: Phys. Chem. Chem. Phys. 17(9), 6588 (2015)

    Article  Google Scholar 

  37. Cherkashinin, G., et al.: J. Electrochem. Soc. 166(3), A5308 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hausbrand .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hausbrand, R. (2020). Li-Ion Energy Levels, Li-Ion Transfer and Electrode Potential. In: Surface Science of Intercalation Materials and Solid Electrolytes. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-52826-3_8

Download citation

Publish with us

Policies and ethics