Skip to main content

Electronic Structure and Reactivity of Electrode—Solid Electrolyte Interfaces

  • Chapter
  • First Online:
Surface Science of Intercalation Materials and Solid Electrolytes

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 402 Accesses

Abstract

Conventional Li-ion batteries use a liquid electrolyte, providing high Li-ion conductivity and allowing for easy processing of composite electrodes and cells [1]. Such batteries are widely used in consumer electronics and are entering large-scale applications such as use in electric vehicles. Due to insufficient stability and the liquid nature of the electrolyte, however, such batteries face shortcomings regarding life time and energy density in view of future application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, J.-K.: Principles and Applications of Lithium Secondary Batteries. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  2. Robinson, A.L., Janek, J.: MRS Bull. 39(12), 1046 (2014)

    Google Scholar 

  3. Janek, J., Zeier, W.G.: Nat. Energy 1 (2016)

    Google Scholar 

  4. Bates, J.B., et al.: Solid State Ionics 53–6, 647 (1992)

    Google Scholar 

  5. Dudney, N.J.: Mat. Sci. Eng. B-Solid 116(3), 245 (2005)

    Google Scholar 

  6. Dudney, N.J.: The Electrochem. Soc. Interface Fall, 44 (2008)

    Google Scholar 

  7. Oudenhoven, J.F.M., et al.: Adv. Energy Mater. 1(1), 10 (2011)

    Google Scholar 

  8. Long, J.W., et al.: Chem. Rev. 104(10), 4463 (2004)

    Google Scholar 

  9. Takada, K.: Acta Mater. 61(3), 759 (2013)

    Google Scholar 

  10. Kato, Y., et al.: Nat. Energy 1 (2016)

    Google Scholar 

  11. Kamaya, N., et al.: Nat. Mater. 10(9), 682 (2011)

    ADS  Google Scholar 

  12. Thangadurai, V., et al.: Chem. Soc. Rev. 43(13), 4714 (2014)

    Google Scholar 

  13. Kim, K.H., et al.: J. Power Sources 196(2), 764 (2011)

    ADS  Google Scholar 

  14. He, Y.M., et al.: Adv. Energy Mater. 9(36) (2019)

    Google Scholar 

  15. Peryez, S.A., et al.: ACS Appl. Mater. Interfaces 11(25), 22029 (2019)

    Google Scholar 

  16. Baggetto, L., et al.: Adv. Func. Mater. 18(7), 1057 (2008)

    Google Scholar 

  17. Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., Bagetto, L.: Adv. Mater. 19, 4564 (2007)

    Google Scholar 

  18. Dudney, N.J., et al.: Handbook of solid state batteries. In: Feldmann, L.C. (ed.) World Scientific Series in Materials and Energy, vol. 6. World Scientific, New Jersey (2016)

    Google Scholar 

  19. Reidmeyer, M.R., Day, D.E.: J. Non-Cryst. Solids 181(3), 201 (1995)

    ADS  Google Scholar 

  20. Hausbrand, R., et al.: Z. Phys. Chem. 229(9), 1387 (2015)

    Google Scholar 

  21. Fleutot, B., et al.: Solid State Ionics 186(1), 29 (2011)

    Google Scholar 

  22. Yu, X.H., et al.: J. Electrochem. Soc. 144(2), 524 (1997)

    ADS  Google Scholar 

  23. Solano, M.A.C., et al.: Ionics 22(4), 471 (2016)

    Google Scholar 

  24. Schwöbel, A., et al.: Appl. Surf. Sci. 321, 55 (2014)

    ADS  Google Scholar 

  25. Kim, Y.G., Wadley, H.N.G.: J. Vac. Sci. Technol., A 26(1), 174 (2008)

    Google Scholar 

  26. Hausbrand, R.: Charge transfer and surface layer formation at Li-ion intercalation electrodes. Habilitation thesis, Technical University of Darmstadt (2018)

    Google Scholar 

  27. Du, Y.J.A., Holzwarth, N.A.W.: Phys. Rev. B 81(18) (2010)

    Google Scholar 

  28. Schwöbel, A.: Präparation und Charakterisierung von LiPON Feststoffelektrolyt-Dünnschichten und deren Grenzflächen. Dissertation, Technische Universität Darmstadt (2015)

    Google Scholar 

  29. Kamitsos, E.I.: J. Phys. Chem-Us 93(4), 1604 (1989)

    Google Scholar 

  30. Fabre, S.D., et al.: J. Electrochem. Soc. 159(2), A104 (2012)

    Google Scholar 

  31. Iriyama, Y., et al.: J. Power Sources 146(1–2), 745 (2005)

    ADS  Google Scholar 

  32. Bates, J.B., et al.: Solid State Ionics 135, 33 (2000)

    Google Scholar 

  33. Yada, C., et al.: Adv. Energy Mater. 4(9) (2014)

    Google Scholar 

  34. Yamamoto, K., et al.: Angew. Chem. Int. Edit. 49(26), 4414 (2010)

    Google Scholar 

  35. Fingerle, M., et al.: Chem. Mater. 29(18), 7675 (2017)

    Google Scholar 

  36. Schwöbel, A., et al.: Solid State Ionics 288, 224 (2016)

    Google Scholar 

  37. Song, J., et al.: Electrochem. Solid State 14(12), A189 (2011)

    Google Scholar 

  38. Jacke, S., et al.: Ionics 16(9), 769 (2010)

    Google Scholar 

  39. Guhl, C., et al.: J. Power Sources 362, 299 (2017)

    ADS  Google Scholar 

  40. Guhl, C., et al.: Electrochim. Acta 268, 226 (2018)

    Google Scholar 

  41. Precht, R.: Solid state lithium Batterien mit organischen Kathoden. Dissertation, Technische Universität Darmstadt (2017)

    Google Scholar 

  42. Wang, Z.Y., et al.: Nano Lett. 16(6), 3760 (2016)

    ADS  Google Scholar 

  43. Zhu, Y.Z., et al.: ACS Appl. Mater. Interfaces 7(42), 23685 (2015)

    Google Scholar 

  44. Sicolo, S., Albe, K.: J. Power Sources 331, 382 (2016)

    ADS  Google Scholar 

  45. Cherkashinin, G., et al.: Chem. Mater. 27(8), 2875 (2015)

    Google Scholar 

  46. Le Van-Jodin, L., et al.: Solid State Ionics 253, 151 (2013)

    Google Scholar 

  47. Hausbrand, R., et al.: Mater. Sci. Eng. B-Adv. 192, 3 (2015)

    Google Scholar 

  48. Li, S.Y., et al.: Phys. Status Solidi-R 8(6), 571 (2014)

    Google Scholar 

  49. Klein, A.: J. Am. Ceram. Soc. 99(2), 369 (2016)

    Google Scholar 

  50. Hausbrand, R., et al.: Thin Solid Films 643, 43 (2017)

    ADS  Google Scholar 

  51. Hausbrand, R., et al.: Prog. Solid State Ch. 42(4), 175 (2014)

    Google Scholar 

  52. Weppner, W.: Fundamental aspects of electrochemical, chemical and electrostatic potentials in lithium batteries. In: Julien, C., Stoynov, Z. (eds.) Materials for Lithium-Ion Batteries, p. 401. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  53. Zhu, Y.Z., et al.: J. Mater. Chem. A 4(9), 3253 (2016)

    Google Scholar 

  54. Wenzel, S., et al.: Solid State Ionics 278, 98 (2015)

    Google Scholar 

  55. Hartmann, P., et al.: J. Phys. Chem. C 117(41), 21064 (2013)

    Google Scholar 

  56. Schwöbel, A., et al.: Solid State Ionics 273, 51 (2015)

    Google Scholar 

  57. Sicolo, S., et al.: J. Power Sources 354, 124 (2017)

    ADS  Google Scholar 

  58. Santosh, K.C., et al.: J. Power Sources 244, 136 (2013)

    Google Scholar 

  59. Fingerle, M., et al.: J. Power Sources 366, 72 (2017)

    ADS  Google Scholar 

  60. Goodenough, J.B., Kim, Y.: Chem. Mater. 22(3), 587 (2010)

    Google Scholar 

  61. Melot, B.C., Tarascon, J.M.: Accounts Chem. Res. 46(5), 1226 (2013)

    Google Scholar 

  62. Gerischer, H., et al.: J. Electrochem. Soc. 141(9), 2297 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hausbrand .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hausbrand, R. (2020). Electronic Structure and Reactivity of Electrode—Solid Electrolyte Interfaces. In: Surface Science of Intercalation Materials and Solid Electrolytes. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-52826-3_6

Download citation

Publish with us

Policies and ethics