Skip to main content

Electronic Structure and Reactivity of Cathode—Liquid Electrolyte Interfaces

  • Chapter
  • First Online:
Surface Science of Intercalation Materials and Solid Electrolytes

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 380 Accesses

Abstract

Li-ion cathode–liquid electrolyte interfaces have been investigated rather intensively for several decades and have been subject of several review papers. Life-time and cycling of the battery leads to various phenomena such as structural reorganization of the surface region, growth of surface layers, and gas evolution, with detrimental consequences for cathode performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dedryvere, R., et al.: J. Phys. Chem. C. 114(24), 10999 (2010)

    Google Scholar 

  2. Andersson, A.M., et al.: J. Electrochem. Soc. 149(10), A1358 (2002)

    Google Scholar 

  3. Thomas, M.G.S.R., et al.: J. Electrochem. Soc. 132, 1521 (1985)

    ADS  Google Scholar 

  4. Cherkashinin, G., et al.: Phys. Chem. Chem. Phys. 14(35), 12321 (2012)

    Google Scholar 

  5. Cherkashinin, G., et al.: Chem. Mater. 27(8), 2875 (2015)

    Google Scholar 

  6. Edstrom, K., et al.: Electrochim Acta 50(2–3), 397 (2004)

    Google Scholar 

  7. Aurbach, D., et al.: J. Power Sources 165(2), 491 (2007)

    ADS  Google Scholar 

  8. Gauthier, M., et al.: J. Phys. Chem. Lett. 6(22), 4653 (2015)

    Google Scholar 

  9. Amalraj, S.F. et al.: On the surface chemistry of cathode materials in Li-Ion batteries. In: Jow, T.R. et al. (eds.) Electrolytes for lithium and lithium-Ion batteries, Springer, New York (2014)

    Google Scholar 

  10. Vetter, J., et al.: J. Power Sources 147(1–2), 269 (2005)

    ADS  Google Scholar 

  11. Hausbrand, R., et al.: Mater Sci. Eng. B-Adv. 192, 3 (2015a)

    Google Scholar 

  12. Goodenough, J.B., Kim, Y.: Chem. Mater. 22(3), 587 (2010)

    Google Scholar 

  13. Lin, F. et al.: Nat. Commun. 5, Artn 3529 (2014)

    Google Scholar 

  14. Takamatsu, D., et al.: Angew Chem Int. Edit 51(46), 11597 (2012)

    Google Scholar 

  15. Kumai, K., et al.: J. Power Sources 81, 715 (1999)

    ADS  Google Scholar 

  16. Hausbrand, R., et al.: Z. Phys. Chem. 229(9), 1387 (2015b)

    Google Scholar 

  17. Spath, T. et al.: Adv. Mater. Interfaces. 4(23) (2017)

    Google Scholar 

  18. Fingerle, M., et al.: Chem. Phys. 498, 19 (2017)

    Google Scholar 

  19. Spath, T., et al.: J. Phys. Chem. C 120(36), 20142 (2016)

    Google Scholar 

  20. Motzko, M., et al.: J. Phys. Chem. C 119(41), 23407 (2015)

    Google Scholar 

  21. Becker, D., et al.: J. Phys. Chem. C 118(2), 962 (2014)

    Google Scholar 

  22. Hausbrand, R., Jaegermann, W.: Reaction layer formation and charge transfer at Li-Ion Cathode—electrolyte interfaces: concepts and results obtained by a surface science approach. In: Wandelt K. (ed.) Encyclopedia of interfacial chemistry, surface science and electrochemistry, Elsevier Inc. (2018)

    Google Scholar 

  23. Trasatti, S.: Surf. Sci. 335(1–3), 1 (1995)

    ADS  Google Scholar 

  24. Kolb, D.M.: J. Solid State Electr. 15(7–8), 1391 (2011)

    Google Scholar 

  25. Jaegermann, W.: The semiconductor/electrolyte interface: a surface science approach. In: White, R.E. et al. (ed.) Modern aspects of electrochemistry No. 30, vol. 30. Plenum Press, New York (1996)

    Google Scholar 

  26. Thiel, P.A., Madey, T.E.: Surf. Sci. Rep. 7(6–8), 211 (1987)

    ADS  Google Scholar 

  27. Henrich, V.E.: Abstr. Pap. Am. Chem. 211, 44 (1996)

    Google Scholar 

  28. Henrich, V.E.: Prog. Surf. Sci. 50(1–4), 77 (1995)

    ADS  Google Scholar 

  29. Wulser, K.W., Langell, M.A.: Catal Lett. 15(1–2), 39 (1992)

    Google Scholar 

  30. Henrich, V.E., Cox, P.A.: The surface science of metal oxides. Cambridge University Press (1994)

    Google Scholar 

  31. Wang, L.Q., et al.: Surf. Sci. 440(1–2), 60 (1999)

    ADS  Google Scholar 

  32. Hausbrand, R.: Charge transfer and surface layer formation at li-ion intercalation electrodes. Habilitation thesis, Technical University of Darmstadt (2018)

    Google Scholar 

  33. Hausbrand, R., et al.: Prog. Solid State Ch. 42(4), 175 (2014)

    Google Scholar 

  34. Hausbrand, R.: J. Chem. Phys. 152, 180902 (2020)

    ADS  Google Scholar 

  35. Schulz, N., et al.: J. Electrochem. Soc. 165(5), A819 (2018)

    Google Scholar 

  36. Takamatsu, D., et al.: J. Electrochem. Soc. 160(5), A3054 (2013)

    Google Scholar 

  37. Zhuang, G.R., et al.: Langmuir 15(4), 1470 (1999)

    Google Scholar 

  38. Bozorgchenani, M., et al.: J. Phys. Chem. C 120(30), 16791 (2016)

    Google Scholar 

  39. Hausbrand, R., et al.: J. Electron. Spectrosc. 221, 65 (2017a)

    Google Scholar 

  40. Hausbrand, R., et al.: Thin Solid Films 643, 43 (2017b)

    ADS  Google Scholar 

  41. Hoffmann, R.: Solids and surfaces: a chemist´s view of bonding in extended structures. VCH Publishers Inc., New York (1988)

    Google Scholar 

  42. Daheron, L., et al.: Chem. Mater. 21(23), 5607 (2009)

    Google Scholar 

  43. Späth, T.: Oberflächenspektroskopische Untersuchungen der Elektrode-Elektrolyt-Grenzfläche in Lithium-Ionen-Batterien. Dissertation, Technische Universität Darmstadt (2018)

    Google Scholar 

  44. Giordano, L., et al.: J. Phys. Chem. Lett. 8(16), 3881 (2017)

    Google Scholar 

  45. Choi, D., et al.: Phys. Chem. Chem. Phys. 20(17), 11592 (2018)

    Google Scholar 

  46. Sato, N.: Electrochemistry at metal and semiconductor electrodes. Elsevier Science B.V, Amsterdam (2003)

    Google Scholar 

  47. Trasatti, S.: Pure Appl. Chem. 58(7), 955 (1986)

    Google Scholar 

  48. Alonso-Vante, N., Tributsch, H.: Electrode materials and strategies for photoelectrochemistry. In: Lipkowski, J., Ross, N.R. (eds.) Electrochemistry of novel materials, p. 1. VCH Publishers Inc., New York (1994)

    Google Scholar 

  49. Borodin, O., et al.: J. Phys. Chem. C 117(17), 8661 (2013)

    Google Scholar 

  50. Park, J.K.: Principles and applications of lithium secondary batteries. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  51. Parker, V.D.: J. Am. Chem. Soc. 98(1), 98 (1976)

    Google Scholar 

  52. Izutsu, K.: Electrochemistry in nonaqueous solutions. Wiley-VCH Verlag GmbH, Weinheim (2002)

    Google Scholar 

  53. Xing, L.D., et al.: J. Phys. Chem. B 113(52), 16596 (2009)

    Google Scholar 

  54. Marcus, R.A.: J. Chem. Phys. 24(5), 966 (1956)

    ADS  Google Scholar 

  55. Braun, S., et al.: Adv. Mater. 21(14–15), 1450 (2009)

    Google Scholar 

  56. Hüfner, S.: Photoelectron spectroscopy. Springer, Berlin (2003)

    Google Scholar 

  57. Tsuneda, T., Tateyama, Y.: Phys. Chem. Chem. Phys. 21(41), 22990 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hausbrand .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hausbrand, R. (2020). Electronic Structure and Reactivity of Cathode—Liquid Electrolyte Interfaces. In: Surface Science of Intercalation Materials and Solid Electrolytes. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-52826-3_5

Download citation

Publish with us

Policies and ethics