Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 359 Accesses

Abstract

Ion intercalation electrodes are ion-exchanging electrodes which absorb and release ions as function of applied potential. Ion-exchanging electrodes are key elements of numerous electrochemical devices essential for our life today, such as Li-ion batteries, sensors, and fuel cells. Solid electrolytes are fast ion conductors which open up the possibility to realize all-solid ionic devices, such as high energy all-solid Li-ion batteries. This work explores surfaces and interfaces of Li-ion intercalation and Li-ion solid electrolyte materials using a surface science approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittingham, M.S.: Prog. Solid State Ch. 12(1), 41 (1978)

    Google Scholar 

  2. Abraham, K.M., Brummer, S.B.: Secondary lithium cells. In: Gabano, J.-P. (ed.) Lithium Batteries, p. 371. Academic Press, London (1983)

    Google Scholar 

  3. Whittingham, M.S.: Science 192(4244), 1126 (1976)

    ADS  Google Scholar 

  4. Mizushima, K., et al.: Mater. Res. Bull. 15(6), 783 (1980)

    Google Scholar 

  5. Padhi, A.K., et al.: J. Electrochem. Soc. 144(4), 1188 (1997)

    ADS  Google Scholar 

  6. Besenhard, J.O., Eichinger, G.: J. Electroanal. Chem. 68(1), 1 (1976)

    Google Scholar 

  7. Melot, B.C., Tarascon, J.M.: Accounts Chem. Res. 46(5), 1226 (2013)

    Google Scholar 

  8. Goodenough, J.B., Kim, Y.: Chem. Mater. 22(3), 587 (2010)

    Google Scholar 

  9. Radin, M.D., et al.: Adv. Energy Mater. 7(20) (2017)

    Google Scholar 

  10. Molenda, J., et al.: Phys. Chem. Chem. Phys. 19(37), 25697 (2017)

    Google Scholar 

  11. Levi, M.D., Aurbach, D.: Electrochim. Acta 45(1–2), 167 (1999)

    Google Scholar 

  12. Kim, S.-W., et al.: The fundamentals and advances of solid-state electrochemistry: intercalation (insertion) and deintercalation (extraction) in solid-state electrodes. In: Kharton, V.V. (ed.) Solid State Electrochemistry I: Fundamentals, Materials and Applications, p. 133. WILEY-VCH Verlag, Weinheim (2009)

    Google Scholar 

  13. Goodenough, J.B., Park, K.S.: J. Am. Chem. Soc. 135(4), 1167 (2013)

    Google Scholar 

  14. Whittingham, M.S.: Chem. Rev. 104(10), 4271 (2004)

    Google Scholar 

  15. Scrosati, B., Garche, J.: J. Power Sources 195(9), 2419 (2010)

    ADS  Google Scholar 

  16. Julien, C.M., Mauger, A.: Ionics 19(7), 951 (2013)

    Google Scholar 

  17. Rozier, P., Tarascon, J.M.: J. Electrochem. Soc. 162(14), A2490 (2015)

    Google Scholar 

  18. Aurbach, D., et al.: J. Power Sources 165(2), 491 (2007)

    ADS  Google Scholar 

  19. Gauthier, M., et al.: J Phys. Chem. Lett. 6(22), 4653 (2015)

    Google Scholar 

  20. Edstrom, K., et al.: Electrochim. Acta 50(2–3), 397 (2004)

    Google Scholar 

  21. Vetter, J., et al.: J. Power Sources 147(1–2), 269 (2005)

    ADS  Google Scholar 

  22. Hausbrand, R.: Charge transfer and surface layer formation at Li-ion intercalation electrodes. Habilitation thesis, Technical University of Darmstadt (2018)

    Google Scholar 

  23. Hausbrand, R., et al.: Mater. Sci. Eng. B-Adv. 192, 3 (2015)

    Google Scholar 

  24. Mauger, A., Julien, C.: Ionics 20(6), 751 (2014)

    Google Scholar 

  25. Placke, T., et al.: J. Solid State Electr. 21(7), 1939 (2017)

    Google Scholar 

  26. Janek, J., Zeier, W.G.: Nat. Energy 1 (2016)

    Google Scholar 

  27. Bates, J.B., et al.: J. Power Sources 54(1), 58 (1995)

    ADS  MathSciNet  Google Scholar 

  28. Dudney, N.J., et al.: Handbook of solid state batteries. In: Feldmann, L.C. (ed.) World Scientific Series in Materials and Energy, vol. 6. World Scientific, New Jersey (2016)

    Google Scholar 

  29. Takada, K.: Acta Mater. 61(3), 759 (2013)

    Google Scholar 

  30. Schwenzel, J., et al.: J. Power Sources 154(1), 232 (2006)

    ADS  Google Scholar 

  31. Long, J.W., et al.: Chem. Rev. 104(10), 4463 (2004)

    Google Scholar 

  32. Oudenhoven, J.F.M., et al.: Adv. Energy Mater. 1(1), 10 (2011)

    Google Scholar 

  33. Kato, Y., et al.: Nat. Energy 1 (2016)

    Google Scholar 

  34. Thangadurai, V., Weppner, W.: Adv. Func. Mater. 15(1), 107 (2005)

    Google Scholar 

  35. Kamaya, N., et al.: Nat. Mater. 10(9), 682 (2011)

    ADS  Google Scholar 

  36. Hausbrand, R.: J Chem. Phys. 152, 180902 (2020)

    ADS  Google Scholar 

  37. Schottky, W.: Naturwissenschaften 26, 843 (1938)

    ADS  Google Scholar 

  38. Shockley, W.: At&T Tech. J. 28(3), 435 (1949)

    Google Scholar 

  39. Sze, S.M.: Physics of Semiconductor Devices. John Wiley and Sons Inc., Singapore (1981)

    Google Scholar 

  40. Marcus, R.A.: J. Chem. Phys. 24(5), 966 (1956)

    ADS  Google Scholar 

  41. Gerischer, H.: Zeitschrift fĂ¼r Physikalische Chemie Neue Folge 26, 223 (1960)

    Google Scholar 

  42. Sato, N.: Electrochemistry at Metal and Semiconductor Electrodes. Elsevier Science B.V, Amsterdam (2003)

    Google Scholar 

  43. Rickert, H.: Angew. Chem. Int. Edit. 4(5), 447 (1965)

    Google Scholar 

  44. Maier, J.: Physical Chemistry of Ionic Materials. John Wiley and Sons Ltd., Chichester (2004)

    Google Scholar 

  45. Vetter, K.J.: Electrochim. Acta 16(11), 1923 (1971)

    Google Scholar 

  46. Cabrera, N., Mott, N.F.: Rep. Prog. Phys. 12, 163 (1948)

    ADS  Google Scholar 

  47. Kaesche, H.: Die Korrosion der Metalle. Springer, Berlin (1990)

    Google Scholar 

  48. Hassel, A., Schultze, J.: Passivity of metals, alloys, and semiconductors. In: Bard, A.J., et al. (eds.) Encyclopedia of Electrochemistry, vol. 4. Wiley-VCH (2003) (Corrosion and Oxide Films)

    Google Scholar 

  49. Peled, E.: J. Electrochem. Soc. 126(12), 2047 (1979)

    ADS  Google Scholar 

  50. Anderson, R.L.: Solid State Electron. 5 (1962)

    Google Scholar 

  51. Robertson, J.: J. Vac. Sci. Technol. A 31(5) (2013)

    Google Scholar 

  52. Henrich, V.E., Cox, P.A.: The Surface Science of Metal Oxides. Cambridge University Press (1994)

    Google Scholar 

  53. Hoffmann, R.: Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures. VCH Publishers Inc, New York (1988)

    Google Scholar 

  54. Atkinson, A.: Rev. Mod. Phys. 57(2), 437 (1985)

    ADS  Google Scholar 

  55. Gerischer, H.: Ion transfer at the interface between an electronic and ionic conductor. In: Kleitz, M., Dupuy, J. (eds.) Electrode Processes in Solid State Ionics. Springer, Dordrecht (1976)

    Google Scholar 

  56. Nowotny, J.: Interface defect chemistry and its impact on properties of oxide ceramic materials In: Nowotny, J. (ed.) Science of Ceramic Interfaces. Elsevier Science Publishers B.V., Amsterdam (1991)

    Google Scholar 

  57. Mukhopadhyay, S.M., Blakey, J.M.: Long range space charge effects at ceramic interfaces. In: Nowotny, J. (ed.) Science of Ceramic Interfaces. Elsevier Science Publishers B.V, Amsterdam (1991)

    Google Scholar 

  58. Maier, J.: Ber. Bunsen. Phys. Chem. 89(4), 355 (1985)

    Google Scholar 

  59. Maier, J.: Prog. Solid State Ch. 23(3), 171 (1995)

    Google Scholar 

  60. Maibach, J., et al.: Nat. Commun. 10 (2019)

    Google Scholar 

  61. Philippe, B., et al.: J. Electrochem. Soc. 163(2), A178 (2016)

    Google Scholar 

  62. Ye, Y., et al.: J. Photoelectron Spectrosc. Relat. Phenom. 221, 2 (2017)

    Google Scholar 

  63. Hausbrand, R., et al.: J. Electron Spectrosc. 221, 65 (2017)

    Google Scholar 

  64. Sangeland, C., et al.: Solid State Ionics 343 (2019)

    Google Scholar 

  65. Kolb, D.M.: J. Vac. Sci. Technol. a-Vac. Surf. Films 4(3), 1294 (1986)

    ADS  Google Scholar 

  66. Mayer, T., et al.: Appl. Surf. Sci. 252(1), 31 (2005)

    ADS  Google Scholar 

  67. Jaegermann, W.: The Semiconductor/electrolyte interface: a surface science approach. In: White, R. E., et al. (eds.) Modern Aspects of Electrochemistry, vol. 30. Plenum Press, New York (1996)

    Google Scholar 

  68. Robertson, J.: J. Vac. Sci. Technol., B 18(3), 1785 (2000)

    Google Scholar 

  69. Li, S.Y., et al.: Phys. Status Solidi-R 8(6), 571 (2014)

    Google Scholar 

  70. Hausbrand, R., Jaegermann, W.: Reaction layer formation and charge transfer at li-ion cathode—electrolyte interfaces: concepts and results obtained by a surface science approach. In: Wandelt, K. (ed.) Encyclopedia of Interfacial Chemistry, Surface Science and Electrochemistry. Elsevier Inc. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hausbrand .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hausbrand, R. (2020). Introduction. In: Surface Science of Intercalation Materials and Solid Electrolytes. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-52826-3_1

Download citation

Publish with us

Policies and ethics