Skip to main content

Atmospheric Waves

  • Chapter
  • First Online:
Fundamentals of Meteorology
  • 1483 Accesses

Abstract

The atmosphere has a wave nature with various types of wave motions (Lin 2007; Hoskins and James 2014). It represents an environment which allows the formation and maintenance of different waves. Let’s first look briefly at the wave physical concept before continuing with the description and derivation of atmospheric waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ćurić, M., & Janc, D. (2002). Dynamical meteorology through exams. Physical Faculty Press. 372 p.

    Google Scholar 

  • Ćurić, M., & Janc, D. (2016). Meteorology. Belgrade-Zemun: AGM book d.o.o. 581 pp.

    Google Scholar 

  • Hoskins, B. J., & James, I. N. (2014). Fluid dynamics of the mid-latitude atmosphere (p. 408 (12)). Wiley.

    Google Scholar 

  • Lin, Y.-L. (2007). Mesoscale dynamics. Cambridge University Press. 630 (12, 13).

    Google Scholar 

  • Lyre, G. (1943). Theorie der stationären Leewellenströmung in freier Atmosphäre. Z Angew Math Mech, 23(1), 1–28.

    Article  Google Scholar 

  • Nappo, C. J. (2013). An introduction to atmospheric gravity waves (p. 359). Academic Press an imprint of Elsevier Science.

    Google Scholar 

  • Pedlosky, J. (2003). Waves in the ocean and atmosphere (p. 259). Springer.

    Google Scholar 

  • Saha, K. (2008). The Earth’s atmosphere. Its physics and dynamics (p. 367 (1, 2, 4, 5, 8, 11, 15)). Berlin Heilderberg: Springer.

    Google Scholar 

  • Spiridonov, V., Baez, J., Telenta, B., & Jakimovski, B. (2020). Prediction of extreme convective rainfall intensities using a free-running 3-D sub-km-scale cloud model initialized from WRF km-scale NWP forecasts. Journal of Atmospheric and Solar-Terrestrial Physics, 209. https://doi.org/10.1016/j.jastp.2020.105401.

  • Yang, X. (2016). Atmospheric acoustics (p. 392). The Gruyter.

    Google Scholar 

  • Volland, H. (1988). Atmospheric tidal and planetary waves (p. 358). Kluwer Academic Publishers.

    Google Scholar 

  • Zdunkowski, W., & Bott, A. (2003). Dynamics of the Atmosphere: A course in theoretical meteorology (p. 719 (12)). Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spiridonov, V., Curic, M. (2021). Atmospheric Waves. In: Fundamentals of Meteorology. Springer, Cham. https://doi.org/10.1007/978-3-030-52655-9_13

Download citation

Publish with us

Policies and ethics