Skip to main content

Part of the book series: Power Systems ((POWSYS))

  • 737 Accesses

Abstract

The HVDC transmission is advantageous for power delivery over long distances and asynchronous interconnections by using overhead lines or underground cables. One of the most important aspects of HVDC systems is its fast and stable controllability [6]. Until recently, the classic HVDC transmission based on thyristors was used for power conversion from AC to DC and vice versa. The appearance of voltage source converter (VSC) makes use of more advanced semiconductor technology instead of thyristors. The VSC-based HVDC installations have several advantages compared to classic HVDC transmission such as independent control of active and reactive power and separate power systems interconnection. VSC-HVDC is also used to reverse the power flow direction without changing the polarity of DC voltage (in multiterminal DC systems), and there are no requirements of fast communication between the two converter stations [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dig SILENT Technical Documentation - PWM Converter, Dig SILENT GmbH, Tech. Rep., 2014

    Google Scholar 

  2. A. Fuchs, Coordinated control of power systems with HVDC links, PhD Thesis, ETH Zurich, 2015

    Google Scholar 

  3. A. Yazdani, R. Iravani, Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications (IEEE Press/Wiley, Hoboken, 2010)

    Book  Google Scholar 

  4. N. Flourentzou, V.G. Agelidis, G.D. Demetriades, VSC-based HVDC power transmission systems: An overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009)

    Article  Google Scholar 

  5. A. Kalair, N. Abas, N. Khan, Comparative study of HVAC and HVDC transmission systems. Renew. Sust. Energ. Rev. 59, 1653–1675 (2016)

    Article  Google Scholar 

  6. M. Davies, M. Dommaschk, J. Dorn, J. Lang, D. Retzmann, D. Soerangr, HVDC PLUS- Basics and principles of operation, Siemens AG-Energy Sector, 2011

    Google Scholar 

  7. B. Chuco, E.H. Watanabe, A comparative study of dynamic performance of HVDC system based on conventional VSC and MMC-VSC, in Proceedings of Bulk Power System Dynamics and Control Symposium, pp.1–6, 2010

    Google Scholar 

  8. M.A. Djehaf, S.A. Zidi, Y.I. Kobibi, S. Hadjeri, Modeling of a multi-level converter based VSC HVDC supplying a dead load, in Proceedings of Electrical and Information Technologies International Conference, pp. 218–223, 2015

    Google Scholar 

  9. Siemens AG. ROBICON Perfect Harmony. [Online]. Available: http://www.industry.siemens.com/drives/global/en/converter/mvdrive/sinamicperfect-harmony/page/sinamics-perfct-harmony.aspx. Accesed Mar 2016

  10. M. H. Okba, M. H. Saied, M. Z. Mostafa, T. M. Abdel-Moneim, High voltage direct current transmission- a review, part I, in IEEE Energytech, pp. 1–7, 2012

    Google Scholar 

  11. M. Bahrman, P.-E. Bjorklund, The new black start. System restoration with the help from voltage-source converters. IEEE Power and Energy Magazine 12(1), 44–53 (2014)

    Article  Google Scholar 

  12. G. Shilpa, P. Manohar, Hybrid HVDC system for multi-infeed applications, in 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing & Computing Applications (C2SPCA), India, 10–11 October, pp. 1–5, 2013

    Google Scholar 

  13. V. Behravesh, N. Abbaspour, New comparison of HVDC and HVAC transmission system. Int. J. Eng. Innov. Res. 1(3), 300–304 (2012)

    Google Scholar 

  14. O. Kotb, A hybrid HVDC transmission system supplying a passive load, M.Sc. Thesis, Department of Electrical and Computer Engineering, Oshawa, 2010

    Google Scholar 

  15. H. Bewa, ABB develops complete system solution for 1,100 kV HVDC power transmission, 2014. [Online]. Available: http://www.abb.ch/cawp/seitp22/3a8302e9925218a4c1257d3f0451b52.aspx

  16. Power T&D Siemens, HVDC plus-basics and principle of operation, Book Siemens Energy Sector Power Transmission Solutions, 2008

    Google Scholar 

  17. S. Kouro et al., Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553–2580 (Aug. 2010)

    Article  Google Scholar 

  18. V. Manoj, K. Manohar, B.D. Prasad, Reduction of switching losses in VSC using DC link fuzzy logic controller innovative systems. Des. Eng. 3(3) (2012)

    Google Scholar 

  19. P. Lundberg, M. Callavik, M. Bahrman, P. Sandeberg, High-voltage DC converters and cable technologies for offshore renewable integration and DC grid expansions. IEEE Power Energy Mag. 10(6), 30–38 (2012)

    Article  Google Scholar 

  20. L. Zhang et al., Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control. IEEE Trans. Power Syst. 26(1), 344–355 (2011)

    Article  Google Scholar 

  21. Y. Li, Z.W. Zhang, C. Rehtanz, L.F. Luo, S. Ruberg, D.C. Yang, A new voltage source converter-HVDC transmission system based on an inductive filtering method. IET Gener. Transm. Distrib. 5(5), 569–576 (May 2011)

    Article  Google Scholar 

  22. T. Rastogi, M.T. Siddiqui, R. Sudha, K. Govardhan, Analysis of Thyristor based HVDC transmission system. Int. J. Electr. Eng. Technol. 3(2), 29–38 (2012)

    Google Scholar 

  23. Y. Zhang et al., Voltage source converter in high voltage applications: Multilevel versus two-level converters, in Proceedings of 9th IET International Conference on AC and DC Power Transmission, London, U.K., pp. 1–5, 2010

    Google Scholar 

  24. G.P. Adam et al., Modular multilevel inverter: Pulse width modulation and capacitor balancing technique. IET Power Electron. 3, 702–715 (2010)

    Article  Google Scholar 

  25. G. P. Adam et al., Modular multilevel converter for medium-voltage applications, in IEEE International Conference on Electrical Machines and Drives, pp. 1013–1018, 2011

    Google Scholar 

  26. L. Xu, L. Yao, DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms. IET Renew. Power Gener. 5(3), 223–233 (2011)

    Article  Google Scholar 

  27. T. Haileselassie, Control, dynamics and operation of multi-terminal vsc-hvdc transmission systems, Ph.D. dissertation, Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 2012

    Google Scholar 

  28. G. Stamatiou, M. Bongiorno, Stability analysis of two terminal VSC-HVDC systems using the net-damping criterion. IEEE Trans. Power Delivery 31(4), 1748–1756 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, N.F., Dessouky, S.S. (2021). High-Voltage Direct Current Transmission. In: Design and Implementation of Voltage Source Converters in HVDC Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-51661-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51661-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51660-4

  • Online ISBN: 978-3-030-51661-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics