Skip to main content

Introducing Chemical Functionalities to Microporous Surfaces: Strategies

  • Chapter
  • First Online:
Breath Figures

Abstract

Introducing chemical functionalities to microporous surfaces is reviewed. Strategies based on the use of functional polymers/nanoparticles are discussed. Involving functional homopolymers and functionalized amphiphilic polymers for the chemical modifying of the surfaces emerging from the breath-figures self-assembly is addressed. The reversible addition fragmentation chain transfer (RAFT) polymerization enabled functionalization of the interfaces obtained with the breath-figures technique. Blending of polymers allows to combine functionalized and non-functionalized polymers which may be precisely placed in prescribed areas of the microporous structure. The use of metallic particles for introducing functionality into the porous films prepared by the breath-figures self-assembly is considered. Strategies for the functionalization of both/either inside and/or outside of the pores are treated in detail. Physical modification of the surfaces emerging from the breath-figures method, such as the cold plasma post-self-assembly treatment, are discussed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Male, U., et al. 2016. Surface functionalization of honeycomb-patterned porous poly(ε-caprolactone) films by interfacial polymerization of aniline. Polymer 99: 623–632.

    CAS  Google Scholar 

  2. Connal, L.A., G.V. Franks, and G.G. Qiao. 2010. Photochromic, metal-absorbing honeycomb structures. Langmuir 26 (13): 10397–10400.

    CAS  Google Scholar 

  3. Ke, B.-B., L.-S. Wan, and Z.-K. Xu. 2010. Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films. Langmuir 26 (11): 8946–8952.

    CAS  Google Scholar 

  4. Munoz-Bonilla, A., M. Fernandez-Garcia, and J. Rodriguez-Hernandez. 2014. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 39 (3): 510–554.

    CAS  Google Scholar 

  5. Widawski, G., M. Rawiso, and B. François. 1994. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369 (6479): 387.

    CAS  Google Scholar 

  6. Song, L., et al. 2004. Facile microstructuring of organic semiconducting polymers by the breath figure method: Hexagonally ordered bubble arrays in rigid rod-polymers. Advanced Materials 16 (2): 115–118.

    CAS  Google Scholar 

  7. Peng, J., et al. 2004. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45 (2): 447–452.

    CAS  Google Scholar 

  8. ———. 2003. Formation of regular hole pattern in polymer films. Macromolecular Chemistry and Physics 204 (1): 125–130.

    CAS  Google Scholar 

  9. Nishikawa, T., et al. 2003. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir 19 (15): 6193–6201.

    CAS  Google Scholar 

  10. Yamamoto, S., et al. 2007. Effect of honeycomb-patterned surface topography on the adhesion and signal transduction of porcine aortic endothelial cells. Langmuir 23 (15): 8114–8120.

    CAS  Google Scholar 

  11. Zhao, B., et al. 2006. Water-assisted fabrication of honeycomb structure porous film from poly (L-lactide). Journal of Materials Chemistry 16 (5): 509–513.

    CAS  Google Scholar 

  12. Servoli, E., G.A. Ruffo, and C. Migliaresi. 2010. Interplay of kinetics and interfacial interactions in breath figure templating–A phenomenological interpretation. Polymer 51 (11): 2337–2344.

    CAS  Google Scholar 

  13. Zhang, Y., et al. 2010. Hierarchical macroporous epoxy resin templated from single semi-fluorinated surfactant. Journal of Porous Materials 17 (6): 693–698.

    CAS  Google Scholar 

  14. Bormashenko, E., et al. 2005. Self-assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies 16 (4): 299–304.

    CAS  Google Scholar 

  15. Zhao, B., et al. 2007. Fabrication of honeycomb ordered polycarbonate films using water droplets as template. Thin Solid Films 515 (7): 3629–3634.

    CAS  Google Scholar 

  16. Tian, Y., et al. 2006. The formation of honeycomb structure in polyphenylene oxide films. Polymer 47 (11): 3866–3873.

    CAS  Google Scholar 

  17. Ma, H., Y. Tian, and X. Wang. 2011. In situ optical microscopy observation of the growth and rearrangement behavior of surface holes in the breath figure process. Polymer 52 (2): 489–496.

    CAS  Google Scholar 

  18. Park, M.S., and J.K. Kim. 2004. Breath figure patterns prepared by spin coating in a dry environment. Langmuir 20 (13): 5347–5352.

    CAS  Google Scholar 

  19. Kasai, W., and T. Kondo. 2004. Fabrication of honeycomb-patterned cellulose films. Macromolecular Bioscience 4 (1): 17–21.

    CAS  Google Scholar 

  20. Nemoto, J., et al. 2005. Production of mesoscopically patterned cellulose film. Bioresource Technology 96 (17): 1955–1958.

    CAS  Google Scholar 

  21. Park, M.S., W. Joo, and J.K. Kim. 2006. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Langmuir 22 (10): 4594–4598.

    CAS  Google Scholar 

  22. Galeotti, F., et al. 2012. Precise surface patterning of silk fibroin films by breath figures. Soft Matter 8 (17): 4815–4821.

    CAS  Google Scholar 

  23. Yunus, S., et al. 2007. A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging. Advanced Functional Materials 17 (7): 1079–1084.

    CAS  Google Scholar 

  24. Galeotti, F., et al. 2010. Self-functionalizing polymer film surfaces assisted by specific polystyrene end-tagging. Chemistry of Materials 22 (9): 2764–2769.

    CAS  Google Scholar 

  25. Billon, L., et al. 2009. Tailoring highly ordered honeycomb films based on ionomer macromolecules by the bottom-up approach. Macromolecules 42 (1): 345–356.

    CAS  Google Scholar 

  26. Ghannam, L., et al. 2007. A versatile route to functional biomimetic coatings: Ionomers for honeycomb-like structures. Soft Matter 3 (12): 1492–1499.

    CAS  Google Scholar 

  27. Stenzel, M.H., T.P. Davis, and A.G. Fane. 2003. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry 13 (9): 2090–2097.

    CAS  Google Scholar 

  28. Escalé, P., et al. 2011. Synthetic route effect on macromolecular architecture: From block to gradient copolymers based on acryloyl galactose monomer using RAFT polymerization. Macromolecules 44 (15): 5911–5919.

    Google Scholar 

  29. Park, N., M. Seo, and S.Y. Kim. 2012. Particle and breath figure formation of triblock copolymers having self-complementary hydrogen-bonding units. Journal of Polymer Science, Part A: Polymer Chemistry 50 (21): 4408–4414.

    CAS  Google Scholar 

  30. Saunders, A.E., et al. 2006. Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 73: 3.

    Google Scholar 

  31. Stenzel, M.H., and T.P. Davis. 2003. Biomimetic honeycomb-structured surfaces formed from block copolymers incorporating acryloyl phosphorylcholine. Australian Journal of Chemistry 56 (10): 1035–1038.

    CAS  Google Scholar 

  32. Wong, K.H., et al. 2007. Honeycomb structured porous films from amphiphilic block copolymers prepared via RAFT polymerization. Polymer 48 (17): 4950–4965.

    CAS  Google Scholar 

  33. Madej, W., et al. 2008. Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir 24 (7): 3517–3524.

    CAS  Google Scholar 

  34. Cui, L., et al. 2004. Tunable ordered droplets induced by convection in phase-separating P2VP/PS blend film. Polymer 45 (24): 8139–8146.

    CAS  Google Scholar 

  35. Ting, S.S., et al. 2009. Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules 42 (24): 9422–9434.

    CAS  Google Scholar 

  36. Stenzel-Rosenbaum, M.H., et al. 2001. Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition 40 (18): 3428–3432.

    CAS  Google Scholar 

  37. Rodríguez-Hernández, J., et al. 2010. Fabrication of honeycomb-structured porous surfaces decorated with glycopolymers. Langmuir 26 (11): 8552–8558.

    Google Scholar 

  38. de León, A.S., et al. 2012. Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 50 (5): 851–859.

    Google Scholar 

  39. Muñoz-Bonilla, A., et al. 2009. Engineering polymer surfaces with variable chemistry and topography. Journal of Polymer Science Part A Polymer Chemistry 47 (9): 2262–2271.

    Google Scholar 

  40. Yabu, H., and M.J.L. Shimomura. 2006. Mesoscale pincushions, microrings, and microdots prepared by heating and peeling of self-organized honeycomb-patterned films deposited on a solid substrate. Langmuir 22 (11): 4992–4997.

    CAS  Google Scholar 

  41. Yabu, H., Y. Hirai, and M. Shimomura. 2006. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir 22 (23): 9760–9764.

    CAS  Google Scholar 

  42. Maillard, M., et al. 2000. Rings and hexagons made of nanocrystals: A marangoni effect. The Journal of Physical Chemistry B 104 (50): 11871–11877.

    CAS  Google Scholar 

  43. Yonezawa, T., S.-y. Onoue, and N. Kimizuka. 2001. Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles. Advanced Materials 13 (2): 140–142.

    CAS  Google Scholar 

  44. Shah, P.S., et al. 2003. Single-step self-organization of ordered macroporous nanocrystal thin films. Advanced Materials 15 (12): 971–974.

    CAS  Google Scholar 

  45. Saunders, A.E., et al. 2004. Inverse opal nanocrystal superlattice films. Nano letters 4 (10): 1943–1948.

    CAS  Google Scholar 

  46. Mücklich, F., A. Lasagni, and C.J.I. Daniel. 2005. Laser interference metallurgy—periodic surface patterning and formation of intermetallics. Intermetallics 13 (3–4): 437–442.

    Google Scholar 

  47. Zhang, L., H.-Y. Si, and H.-L. Zhang. 2008. Highly ordered fluorescent rings by “breath figures” on patterned substrates using polymer-free CdSe quantum dots. Journal of Materials Chemistry 18 (23): 2660–2665.

    CAS  Google Scholar 

  48. Böker, A., et al. 2004. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials 3 (5): 302.

    Google Scholar 

  49. Nurmawati, M.H., et al. 2008. Hierarchical self-organization of nanomaterials into two-dimensional arrays using functional polymer scaffold. Advanced Functional Materials 18 (20): 3213–3218.

    CAS  Google Scholar 

  50. Jiang, X., et al. 2009. Interfacial effects of in situ-synthesized Ag nanoparticles on breath figures. Langmuir 26 (4): 2477–2483.

    Google Scholar 

  51. Wang, J., et al. 2010. Quantum-dot-embedded ionomer-derived films with ordered honeycomb structures via breath figures. Chemical Communications 46 (39): 7376–7378.

    CAS  Google Scholar 

  52. You, B., et al. 2008. Facile method for fabrication of nanocomposite films with an ordered porous surface. JournalJournal of Physical Chemistry B 112 (26): 7706–7712.

    CAS  Google Scholar 

  53. Yabu, H., et al. 2005. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir 21 (8): 3235–3237.

    CAS  Google Scholar 

  54. Zhang, Y., and C.J.A.M. Wang. 2007. Micropatterning of proteins on 3D porous polymer film fabricated by using the breath-figure method. Advanced Materials 19 (7): 913–916.

    CAS  Google Scholar 

  55. Min, E., K.H. Wong, and M.H.J.A.M. Stenzel. 2008. Microwells with patterned proteins by a self-assembly process using honeycomb-structured porous films. Advanced Materials 20 (18): 3550–3556.

    CAS  Google Scholar 

  56. Ke, B.-B., et al. 2010. Tunable assembly of nanoparticles on patterned porous film. Langmuir 26 (20): 15982–15988.

    CAS  Google Scholar 

  57. Wan, L.-S., et al. 2010. Facilitated and site-specific assembly of functional polystyrene microspheres on patterned porous films. ACS Applied Materials & Interfaces 2 (12): 3759–3765.

    CAS  Google Scholar 

  58. Xu, W.Z., X. Zhang, and J.F.J.B. Kadla. 2012. Design of functionalized cellulosic honeycomb films: Site-specific biomolecule modification via “click chemistry”. Biomacromolecules 13 (2): 350–357.

    CAS  Google Scholar 

  59. Hernández-Guerrero, M., et al. 2008. Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. Journal of Materials Chemistry 18 (39): 4718–4730.

    Google Scholar 

  60. Min, E.H., et al. 2010. Thermo-responsive glycopolymer chains grafted onto honeycomb structured porous films via RAFT polymerization as a thermo-dependent switcher for lectin Concanavalin a conjugation. Journal of Polymer Science Part A: Polymer Chemistry 48 (15): 3440–3455.

    CAS  Google Scholar 

  61. Nystrom, D., et al. 2010. Biomimetic surface modification of honeycomb films via a “grafting from” approach. Langmuir 26 (15): 12748–12754.

    CAS  Google Scholar 

  62. De León, A.S., et al. 2013. Control of the chemistry outside the pores in honeycomb patterned films. Polymer Chemistry 4 (14): 4024–4032.

    Google Scholar 

  63. Yasuda, H.K. 1984. Plasma polymerization and plasma treatment. Missouri Univ-Rolla Materials Research Center.

    Google Scholar 

  64. Mittal, K.L. 2014. Plasma surface modification of polymers: Relevance to adhesion. CRC Press.

    Google Scholar 

  65. Thomas, M., and K.L. Mittal. 2013. Atmospheric pressure plasma treatment of polymers: Relevance to adhesion. John Wiley & Sons.

    Google Scholar 

  66. Lommatzsch, U., et al. 2007. Pretreatment and surface modification of polymers via atmospheric-pressure plasma jet treatment. Polymer Surface Modification: Relevance to Adhesion 4: 25–32.

    Google Scholar 

  67. Bormashenko, E., et al. 2015. Physical mechanisms of interaction of cold plasma with polymer surfaces. Journal of Colloid Interface Science 448: 175–179.

    CAS  Google Scholar 

  68. Morra, M., et al. 1990. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid Interface Science 137 (1): 11–24.

    CAS  Google Scholar 

  69. Bormashenko, E., G. Chaniel, and R. Grynyov. 2013. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery. Applied Surface Science 273: 549–553.

    CAS  Google Scholar 

  70. Guo, T., et al. 2015. Ordered porous structure hybrid films generated by breath figures for directional water penetration. RSC Advances 5 (107): 88471–88476.

    CAS  Google Scholar 

  71. Kamei, J., Y. Saito, and H. Yabu. 2014. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film. Langmuir 30 (47): 14118–14122.

    CAS  Google Scholar 

  72. Lai, J., et al. 2006. Study on hydrophilicity of polymer surfaces improved by plasma treatment. Applied Surface Science 252 (10): 3375–3379.

    CAS  Google Scholar 

  73. Brown, P., et al. 2012. Superhydrophobic hierarchical honeycomb surfaces. Langmuir 28 (38): 13712–13719.

    CAS  Google Scholar 

  74. Minařík, M., et al. 2019. Preparation of hierarchically structured polystyrene surfaces with superhydrophobic properties by plasma-assisted fluorination. Coatings 9 (3): 201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Hernández, J., Bormashenko, E. (2020). Introducing Chemical Functionalities to Microporous Surfaces: Strategies. In: Breath Figures . Springer, Cham. https://doi.org/10.1007/978-3-030-51136-4_5

Download citation

Publish with us

Policies and ethics