Skip to main content

Methodologies Involved in Manufacturing Self-Assembled Breath-Figures Patterns: Drop-Casting and Spin- and Dip-Coating – Characterization of Microporous Surfaces

  • Chapter
  • First Online:
Breath Figures

Abstract

Methodologies involved in manufacturing of self-assembled breath-figures patterns, namely: emulsion technique, drop-casting, spin- and dip-coating, are treated in detail. Physical processes occurring under these methods are discussed. Characterization of microporous surfaces with various experimental techniques is addressed. Surface characterization of polymer honeycomb reliefs with apparent contact angles, optical microscopy, SEM, ESEM, AFM, FTIR and Raman spectroscopies, NMR, XPS, XRD, TGA, DTA, DSC, and mass-spectroscopy methods are surveyed. Advantages and disadvantages of these techniques are discussed. Wetting of microporous surfaces is treated; the Cassie and Wenzel models of wetting of micro-rough surfaces are reviewed. Mathematical techniques (Voronoi entropy, Minkowski functional, etc.) enabling quantification of ordering inherent for honeycomb breath-figures topographies are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maruyama, N., et al. 1998. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329: 854–856.

    Google Scholar 

  2. Kim, J., B. Lew, and W.S. Kim. 2011. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method. Nanoscale Research Letters 6 (1): 616.

    Google Scholar 

  3. Eslamian, M., and F. Soltani-Kordshuli. 2018. Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films. Journal of Coatings Technology and Research 15 (2): 271–280.

    CAS  Google Scholar 

  4. Deegan, R.D., et al. 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653): 827.

    CAS  Google Scholar 

  5. ———. 2000. Contact line deposits in an evaporating drop. Physical Review E 62 (1): 756.

    CAS  Google Scholar 

  6. Hu, H., and R.G. Larson. 2006. Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B 110 (14): 7090–7094.

    CAS  Google Scholar 

  7. ———. 2005. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9): 3972–3980.

    CAS  Google Scholar 

  8. Marín, Á.G., et al. 2011. Order-to-disorder transition in ring-shaped colloidal stains. Physical Review Letters 107 (8): 085502.

    Google Scholar 

  9. Stenzel, M.H., C. Barner-Kowollik, and T.P. Davis. 2006. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 44 (8): 2363–2375.

    CAS  Google Scholar 

  10. Govor, L.V., et al. 2001. Self-organized networks based on conjugated polymers. Advanced Materials 13 (8): 588–591.

    CAS  Google Scholar 

  11. Angus, S.D., and T.P.J.L. Davis. 2002. Polymer surface design and informatics: Facile microscopy/image analysis techniques for self-organizing microporous polymer film characterization. Langmuir 18 (24): 9547–9553.

    CAS  Google Scholar 

  12. Yabu, H., et al. 2003. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir 19 (15): 6297–6300.

    CAS  Google Scholar 

  13. Nishikawa, T., et al. 2003. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir 19 (15): 6193–6201.

    CAS  Google Scholar 

  14. Song, L., et al. 2004. Facile microstructuring of organic semiconducting polymers by the breath figure method: Hexagonally ordered bubble arrays in rigid rod-polymers. Advanced Materials 16 (2): 115–118.

    CAS  Google Scholar 

  15. Böker, A., et al. 2004. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials 3 (5): 302.

    Google Scholar 

  16. Nemoto, J., et al. 2005. Production of mesoscopically patterned cellulose film. Bioresource Technology 96 (17): 1955–1958.

    CAS  Google Scholar 

  17. Hernández-Guerrero, M., and M.H. Stenzel. 2012. Honeycomb structured polymer films via breath figures. Polymer Chemistry 3 (3): 563–577.

    Google Scholar 

  18. Farbod, F., B. Pourabbas, and M. Sharif. 2013. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. Journal of Polymer Science Part B: Polymer Physics 51 (6): 441–451.

    CAS  Google Scholar 

  19. Huang, C., et al. 2014. Breath figure patterns made easy. ACS Applied Materials and Interfaces 6 (8): 5971–5976.

    CAS  Google Scholar 

  20. Vargas-Alfredo, N., et al. 2017. Antimicrobial 3D porous scaffolds prepared by additive manufacturing and breath figures. ACS Applied Materials & Interfaces 9 (42): 37454–37462.

    CAS  Google Scholar 

  21. Nishikawa, T., et al. 2002. Fabrication of honeycomb film of an amphiphilic copolymer at the air−water interface. Langmuir 18 (15): 5734–5740.

    CAS  Google Scholar 

  22. ———. 1999. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Materials Science and Engineering C 8-9: 495–500.

    Google Scholar 

  23. Cheng, C.X., et al. 2005. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21 (14): 6576–6581.

    CAS  Google Scholar 

  24. Ma, H., and J. Hao. 2010. Evaporation-induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chemistry 16 (2): 655–660.

    CAS  Google Scholar 

  25. Wan, L.-S., et al. 2011. Ordered microporous membranes templated by breath figures for size-selective separation. Journal of the American Chemical Society 134 (1): 95–98.

    Google Scholar 

  26. Park, M.S., and J.K. Kim. 2004. Breath figure patterns prepared by spin coating in a dry environment. Langmuir 20 (13): 5347–5352.

    CAS  Google Scholar 

  27. Park, M.S., W. Joo, and J.K. Kim. 2006. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Langmuir 22 (10): 4594–4598.

    CAS  Google Scholar 

  28. Park, M.S., and J.K. Kim. 2005. Broad-band antireflection coating at near-infrared wavelengths by a breath figure. Langmuir 21 (24): 11404–11408.

    CAS  Google Scholar 

  29. Fowler, P.D., et al. 2016. Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. The European Physical Journal E 39 (9): 90.

    Google Scholar 

  30. Sahu, N., B. Parija, and S. Panigrahi. 2009. Fundamental understanding and modeling of spin coating process: A review. Indian Journal of Physics 83 (4): 493–502.

    CAS  Google Scholar 

  31. Malkin, A.Y., and A.I. Isayev. 2017. Rheology: Concepts, methods, and applications. Elsevier.

    Google Scholar 

  32. Bormashenko, E., et al. 2005. Mesoscopic patterning in thin polymer films formed under the fast dip-coating process. Macromolecular Materials and Engineering 290 (2): 114–121.

    CAS  Google Scholar 

  33. Mansouri, J., E. Yapit, and V. Chen. 2013. Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. Journal of Membrane Science 444: 237–251.

    CAS  Google Scholar 

  34. Ucar, I.O., and H.Y. Erbil. 2012. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Applied Surface Science 259: 515–523.

    CAS  Google Scholar 

  35. Jin, B., A. Acrivos, and A. Münch. 2005. The drag-out problem in film coating. Physics of Fluids 17 (10): 103603.

    Google Scholar 

  36. Landau, L., and B. Levich. 1988. Dragging of a liquid by a moving plate. In Dynamics of curved fronts, 141–153. Elsevier.

    Google Scholar 

  37. De Gennes, P.-G., F. Brochard-Wyart, and D. Quéré. 2013. Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. Springer Science & Business Media.

    Google Scholar 

  38. Wilson, S.D.R. 1982. The drag-out problem in film coating theory. Journal of Engineering Mathematics 16 (3): 209–221.

    Google Scholar 

  39. Munoz-Bonilla, A., et al. 2009. Self-organized hierarchical structures in polymer surfaces: Self-assembled nanostructures within breath figures. Langmuir 25 (11): 6493–6499.

    CAS  Google Scholar 

  40. Luo, T., H. Bai, and L. Li. 2016. Breath figure in reactive vapor: A new route to nanopore array. Langmuir 33 (1): 347–352.

    Google Scholar 

  41. Zhang, S., et al. 2017. Supramolecular star polymer films with tunable honeycomb structures templated by breath figures. Polymer 117: 306–314.

    CAS  Google Scholar 

  42. Wang, J., et al. 2010. Quantum-dot-embedded ionomer-derived films with ordered honeycomb structures via breath figures. Chemical Communications 46 (39): 7376–7378.

    CAS  Google Scholar 

  43. Ham, H.T., et al. 2006. Macroporous polymer thin film prepared from temporarily stabilized water-in-oil emulsion. The Journal of Physical Chemistry B 110 (28): 13959–13964.

    CAS  Google Scholar 

  44. Widawski, G., M. Rawiso, and B. François. 1994. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369 (6479): 387.

    CAS  Google Scholar 

  45. Srinivasarao, M., et al. 2001. Three-dimensionally ordered array of air bubbles in a polymer film. Science 292 (5514): 79–83.

    CAS  Google Scholar 

  46. Stenzel-Rosenbaum, M.H., et al. 2001. Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie 40 (18): 3428–3432.

    CAS  Google Scholar 

  47. Hayakawa, T., and S. Horiuchi. 2003. From angstroms to micrometers: Self-organized hierarchical structure within a polymer film. Angewandte Chemie International Edition 42 (20): 2285–2289.

    CAS  Google Scholar 

  48. Shah, P.S., et al. 2003. Single-step self-organization of ordered macroporous nanocrystal thin films. Advanced Materials 15 (12): 971–974.

    CAS  Google Scholar 

  49. Ejima, H., T. Iwata, and N. Yoshie. 2008. Morphology-retaining carbonization of honeycomb-patterned hyperbranched poly (phenylene vinylene) film. Macromolecules 41 (24): 9846–9848.

    CAS  Google Scholar 

  50. Sun, H., et al. 2006. Self-organized microporous structures based on surfactant-encapsulated polyoxometalate complexes. The Journal of Physical Chemistry B 110 (49): 24847–24854.

    CAS  Google Scholar 

  51. ———. 2009. Self-organized honeycomb structures of Mn12 single-molecule magnets. The Journal of Physical Chemistry B 113 (44): 14674–14680.

    CAS  Google Scholar 

  52. Bolognesi, A., et al. 2005. Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography. Langmuir 21 (8): 3480–3485.

    CAS  Google Scholar 

  53. Servoli, E., G.A. Ruffo, and C. Migliaresi. 2010. Interplay of kinetics and interfacial interactions in breath figure templating–A phenomenological interpretation. Polymer 51 (11): 2337–2344.

    CAS  Google Scholar 

  54. Billon, L., et al. 2009. Tailoring highly ordered honeycomb films based on ionomer macromolecules by the bottom-up approach. Macromolecules 42 (1): 345–356.

    CAS  Google Scholar 

  55. Dong, R., et al. 2011. Dimensional architecture of ferrocenyl-based oligomer honeycomb-patterned films: From monolayer to multilayer. Langmuir 27 (14): 9052–9056.

    CAS  Google Scholar 

  56. ———. 2011. Tunable morphology of 2D honeycomb-patterned films and the hydrophobicity of a ferrocenyl-based oligomer. Chemistry – A European Journal 17 (27): 7674–7684.

    CAS  Google Scholar 

  57. Yan, J., et al. 2010. Oligo (FcDC-co-CholDEA) with ferrocene in the main chain and cholesterol as a pendant group preparation and unusual properties. The Journal of Physical Chemistry B 114 (41): 13116–13120.

    CAS  Google Scholar 

  58. Escalé, P., et al. 2016. When block copolymer self-assembly in hierarchically ordered honeycomb films depicts the breath figure process. Soft Matter 12 (3): 790–797.

    Google Scholar 

  59. Hant, S.M., et al. 2005. Periodic binary si: ti, si: al mixed macroporous oxides with ultrahigh heteroatom loading: A facile sol− gel approach. Chemistry of Materials 17 (6): 1434–1440.

    CAS  Google Scholar 

  60. Carlomagno, C., et al. 2018. Breath figures decorated silica-based ceramic surfaces with tunable geometry from UV cross-linkable polysiloxane precursor. Journal of the European Ceramic Society 38 (4): 1320–1326.

    CAS  Google Scholar 

  61. Castaño, M., et al. 2018. Combining breath figures and supercritical fluids to obtain porous polymer scaffolds. ACS Omega 3 (10): 12593–12599.

    Google Scholar 

  62. Yabu, H., et al. 2005. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir 21 (8): 3235–3237.

    CAS  Google Scholar 

  63. Yabu, H., and M. Shimomura. 2005. Simple fabrication of micro lens arrays. Langmuir 21 (5): 1709–1711.

    CAS  Google Scholar 

  64. Yu, Y., and Y. Ma. 2011. Breath figure fabrication of honeycomb films with small molecules through hydrogen bond mediated self-assembly. Soft Matter 7 (3): 884–886.

    CAS  Google Scholar 

  65. Sun, W., J. Ji, and J. Shen. 2008. Rings of nanoparticle-decorated honeycomb-structured polymeric film: The combination of pickering emulsions and capillary flow in the breath figures method. Langmuir 24 (20): 11338–11341.

    CAS  Google Scholar 

  66. Ma, C.Y., et al. 2010. Patterned carbon nanotubes with adjustable array: A functional breath figure approach. Chemistry of Materials 22 (7): 2367–2374.

    CAS  Google Scholar 

  67. Male, U., B.K. Shin, and D.S. Huh. 2017. Coupling of breath figure method with interfacial polymerization: Bottom-surface functionalized honeycomb-patterned porous films. Polymer 119: 206–211.

    CAS  Google Scholar 

  68. Zhang, L., and X. Li. 2018. Facile preparation of honeycomb-structured TiO2 nanofilm via breath figures assembly and coffee ring effect. Materials Letters 227: 74–77.

    CAS  Google Scholar 

  69. Stenzel, M.H., and T.P. Davis. 2003. Biomimetic honeycomb-structured surfaces formed from block copolymers incorporating acryloyl phosphorylcholine. Australian Journal of Chemistry 56 (10): 1035–1038.

    CAS  Google Scholar 

  70. Muñoz-Bonilla, A., et al. 2009. Engineering polymer surfaces with variable chemistry and topography. Journal of Polymer Science Part A: Polymer Chemistry 47 (9): 2262–2271.

    Google Scholar 

  71. Kon, K., et al. 2010. Preparation of patterned zinc oxide films by breath figure templating. Langmuir 26 (14): 12173–12176.

    CAS  Google Scholar 

  72. Sakatani, Y., et al. 2008. Coupling nanobuilding block and breath figures approaches for the designed construction of hierarchically templated porous materials and membranes. Chemistry of Materials 20 (3): 1049–1056.

    CAS  Google Scholar 

  73. Guo, Q. 2016. Polymer morphology: Principles, characterization, and processing. Wiley.

    Google Scholar 

  74. Menczel, J.D., and R.B. Prime. 2009. Thermal analysis of polymers. Wiley Online Library.

    Google Scholar 

  75. Lin, C.-L., P.-H. Tung, and F.-C. Chang. 2005. Synthesis of rod-coil diblock copolymers by ATRP and their honeycomb morphologies formed by the ‘breath figures’ method. Polymer 46 (22): 9304–9313.

    CAS  Google Scholar 

  76. Bolognesi, A., et al. 2010. Unsoluble ordered polymeric pattern by breath figure approach. Journal of Materials Chemistry 20 (8): 1483–1488.

    CAS  Google Scholar 

  77. Du, M., et al. 2011. Honeycomb self-assembled peptide scaffolds by the breath figure method. Chemistry–A European Journal 17 (15): 4238–4245.

    CAS  Google Scholar 

  78. Kong, L., et al. 2013. Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 29 (13): 4235–4241.

    CAS  Google Scholar 

  79. Izunobi, J.U., and C.L. Higginbotham. 2011. Polymer molecular weight analysis by 1H NMR spectroscopy. Journal of Chemical Education 88 (8): 1098–1104.

    CAS  Google Scholar 

  80. Yunus, S., et al. 2007. A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging. Advanced Functional Materials 17 (7): 1079–1084.

    CAS  Google Scholar 

  81. Bormashenko, E.Y. 2017. Physics of wetting: Phenomena and applications of fluids on surfaces. Walter de Gruyter GmbH & Co KG.

    Google Scholar 

  82. Erbil, H. Yildirim. 2006. Surface chemistry of solid and liquid interfaces. Oxford: Blackwell.

    Google Scholar 

  83. Wenzel, R.N. 1936. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28 (8): 988–994.

    CAS  Google Scholar 

  84. Cassie, A., and S. Baxter. 1944. Wettability of porous surfaces. J Transactions of the Faraday society 40: 546–551.

    CAS  Google Scholar 

  85. Cassie, A.B.D. 1948. Contact angles. Discussions of the Faraday Society 3: 11–16.

    Google Scholar 

  86. Bormashenko, E.Y. 2018. Wetting of real surfaces. Vol. 19. Walter de Gruyter GmbH & Co KG.

    Google Scholar 

  87. Bormashenko, E., et al. 2006. Micrometrically scaled textured metallic hydrophobic interfaces validate the Cassie–Baxter wetting hypothesis. Journal of Colloid and Interface Science 302 (1): 308–311.

    CAS  Google Scholar 

  88. Yabu, H., and M. Shimomura. 2005. Single-step fabrication of transparent superhydrophobic porous polymer films. Chemistry of Materials 17 (21): 5231–5234.

    CAS  Google Scholar 

  89. Barthélemy, M. 2011. Spatial networks. Physics Reports 499 (1): 1–101.

    Google Scholar 

  90. Bormashenko, E., et al. 2018. Characterization of self-assembled 2D patterns with Voronoi Entropy. Entropy 20 (12): 956.

    CAS  Google Scholar 

  91. Voronoi, G. 1908. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik (134): 198–287.

    Google Scholar 

  92. Liebling, T.M., and L. Pournin. Voronoi diagrams and Delaunay triangulations: Ubiquitous Siamese twins. Documenta Mathematics, ISMP 2012: 419–431.

    Google Scholar 

  93. Limaye, A., et al. 1996. Evidence for convective effects in breath figure formation on volatile fluid surfaces. Physical Review Letters 76 (20): 3762.

    CAS  Google Scholar 

  94. Madej, W., et al. 2008. Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir 24 (7): 3517–3524.

    CAS  Google Scholar 

  95. Lim, J.S. 1990. Two-dimensional signal and image processing. Englewood Cliffs, NJ: Prentice Hall. 710 p.

    Google Scholar 

  96. Parker, J., et al. 2013. Automatic sorting of point pattern sets using Minkowski functionals. Physical Review E 88 (2): 022720.

    Google Scholar 

  97. Mantz, H., et al. 2008. Utilizing Minkowski functionals for image analysis: A marching square algorithm. Journal of Statistical Mechanics: Theory and Experiment 2008 (12): P12015.

    Google Scholar 

  98. Bormashenko, E., et al. 2008. Mesoscopic patterning in evaporated polymer solutions: Poly (ethylene glycol) and room-temperature-vulcanized polyorganosilanes/-siloxanes promote formation of honeycomb structures. Macromolecular Chemistry and Physics 209 (6): 567–576.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Hernández, J., Bormashenko, E. (2020). Methodologies Involved in Manufacturing Self-Assembled Breath-Figures Patterns: Drop-Casting and Spin- and Dip-Coating – Characterization of Microporous Surfaces. In: Breath Figures . Springer, Cham. https://doi.org/10.1007/978-3-030-51136-4_4

Download citation

Publish with us

Policies and ethics