Skip to main content

Breath-Figures Formation: Physical Aspects

  • Chapter
  • First Online:
Breath Figures

Abstract

Physical aspects of the process of the breath-figures self-assembly are surveyed. The main physical processes involved in the process are: (1) evaporation of the polymer solution; (2) nucleation of water droplets; (3) condensation of water droplets; (4) growth of droplets; (5) evaporation of water; and (6) solidification of polymer giving rise to the eventual microporous pattern. Hierarchy of the temporal and spatial scales inherent for the breath-figures self-assembly is elucidated. Dimensionless numbers describing the process are supplied. Topological aspects of the self-assembly are considered. Crucial role of the solvent, including its interfacial properties, in the process is addressed in detail. Role of the interfacial Marangoni flows in the formation of the large-scale pattern is treated. The physical properties of the substrate influence the eventual pattern. Nucleation, condensation, and growth of water droplets are addressed in detail. Physical mechanisms of micro-scaled ordering in the breath-figures self-assembly are discussed. The role of the capillary attraction is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widawski, G., M. Rawiso, and B. François. 1994. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369 (6479): 387.

    CAS  Google Scholar 

  2. Munoz-Bonilla, A., M. Fernandez-Garcia, and J. Rodriguez-Hernandez. 2014. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 39 (3): 510–554.

    CAS  Google Scholar 

  3. Bormashenko, E. 2017. Breath-figure self-assembly, a versatile method of manufacturing membranes and porous structures: Physical, chemical and technological aspects. Membranes 7 (3): 45.

    Google Scholar 

  4. Ferrari, E., P. Fabbri, and F. Pilati. 2011. Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 27 (5): 1874–1881.

    CAS  Google Scholar 

  5. Servoli, E., G.A. Ruffo, and C. Migliaresi. 2010. Interplay of kinetics and interfacial interactions in breath figure templating–A phenomenological interpretation. Polymer 51 (11): 2337–2344.

    CAS  Google Scholar 

  6. Srinivasarao, M., et al. 2001. Three-dimensionally ordered Array of air bubbles in a polymer film. Science 292 (5514): 79–83.

    CAS  Google Scholar 

  7. Maruyama, N., et al. 1998. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329: 854–856.

    Google Scholar 

  8. Bormashenko, E., S. Balter, and D. Aurbach. 2012. On the nature of the breath figures self-assembly in evaporated polymer solutions: Revisiting physical factors governing the patterning. Macromolecular Chemistry and Physics 213 (16): 1742–1747.

    CAS  Google Scholar 

  9. Sharma, V., et al. 2010. Effect of solvent choice on breath-figure-templated assembly of “holey” polymer films. EPL (Europhysics Letters) 91 (3): 38001.

    Google Scholar 

  10. Tian, Y., et al. 2006. The formation of honeycomb structure in polyphenylene oxide films. Polymer 47 (11): 3866–3873.

    CAS  Google Scholar 

  11. Escalé, P., et al. 2012. Recent advances in honeycomb-structured porous polymer films prepared via breath figures. European Polymer Journal 48 (6): 1001–1025.

    Google Scholar 

  12. Nishikawa, T., et al. 2002. Fabrication of honeycomb film of an amphiphilic copolymer at the air−water interface. Langmuir 18 (15): 5734–5740.

    CAS  Google Scholar 

  13. Wan, L.-S., et al. 2012. Ordered microporous membranes templated by breath figures for size-selective separation. Journal of the American Chemical Society 134 (1): 95–98.

    CAS  Google Scholar 

  14. Park, J.S., et al. 2007. Hierarchically ordered polymer films by templated organization of aqueous droplets. Advanced Functional Materials 17 (14): 2315–2320.

    CAS  Google Scholar 

  15. Limaye, A.V., et al. 1996. Evidence for convective effects in breath figure formation on volatile fluid surfaces. Physical Review Letters 76 (20): 3762–3765.

    CAS  Google Scholar 

  16. Zhao, B., et al. 2005. Formation of ordered macroporous membranes from random copolymers by the breath figure method. Polymer 46 (22): 9508–9513.

    CAS  Google Scholar 

  17. Park, M.S., and J.K. Kim. 2005. Broad-band antireflection coating at near-infrared wavelengths by a breath figure. Langmuir 21 (24): 11404–11408.

    CAS  Google Scholar 

  18. Megelski, S., et al. 2002. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35 (22): 8456–8466.

    CAS  Google Scholar 

  19. Casper, C.L., et al. 2004. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 37 (2): 573–578.

    CAS  Google Scholar 

  20. De Gennes, P.-G., F. Brochard-Wyart, and D. Quéré. 2003. Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. Berlin: Springer Science & Business Media.

    Google Scholar 

  21. Bormashenko, E.Y. 2017. Physics of wetting: Phenomena and applications of fluids on surfaces. Berlin: Walter de Gruyter GmbH & Co KG.

    Google Scholar 

  22. Peng, J., et al. 2004. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45 (2): 447–452.

    CAS  Google Scholar 

  23. Zhang, A., H. Bai, and L. Li. 2015. Breath figure: A nature-inspired preparation method for ordered porous films. Chemical Reviews 115 (18): 9801–9868.

    CAS  Google Scholar 

  24. Wan, L.-S., et al. 2014. Multiple interfaces in self-assembled breath figures. Chemical Communications 50 (31): 4024–4039.

    CAS  Google Scholar 

  25. De León, A.S., et al. 2012. Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 50 (5): 851–859.

    Google Scholar 

  26. Ding, J., et al. 2012. Constructing honeycomb micropatterns on nonplanar substrates with high glass transition temperature polymers. Journal of Colloid and Interface Science 380: 99–104.

    CAS  Google Scholar 

  27. ———. 2013. Breath figure in non-aqueous vapor. Soft Matter 9 (2): 506–514.

    CAS  Google Scholar 

  28. Ober, R., et al. 1983. Study of the surface tension of polymer solutions: Theory and experiments. Good solvent conditions. Macromolecules 16 (1): 50–55.

    CAS  Google Scholar 

  29. Redon, C., D. Ausserre, and F. Rondelez. 1992. Concentration dependence of the interfacial tension of polymer solutions near repulsive walls and in good solvent. Macromolecules 25 (22): 5965–5969.

    CAS  Google Scholar 

  30. Smith, J.D., et al. 2013. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9 (6): 1772–1780.

    CAS  Google Scholar 

  31. Bormashenko, E., et al. 2007. Formation of films on water droplets floating on a polymer solution surface. Macromolecular Chemistry and Physics 208 (7): 702–709.

    CAS  Google Scholar 

  32. Ma, H., Y. Tian, and X. Wang. 2011. In situ optical microscopy observation of the growth and rearrangement behavior of surface holes in the breath figure process. Polymer 52 (2): 489–496.

    CAS  Google Scholar 

  33. Barrow, M.S., et al. 2004. Physical characterisation of microporous and nanoporous polymer films by atomic force microscopy, scanning electron microscopy and high speed video microphotography. Spectroscopy 18 (4).

    Google Scholar 

  34. Bormashenko, E., et al. 2008. Free-standing, thermostable, micrometer-scale honeycomb polymer films and their properties. Macromolecular Materials and Engineering 293 (11): 872–877.

    CAS  Google Scholar 

  35. Gordon, M.P., L.T. Lloyd, and D.S. Boucher. 2016. Poly(3-hexylthiophene) films prepared using binary solvent mixtures. Journal of Polymer Science Part B: Polymer Physics 54 (6): 624–638.

    CAS  Google Scholar 

  36. Bormashenko, E., et al. 2005. Mesoscopic patterning in thin polymer films formed under the fast dip-coating process. Macromolecular Materials and Engineering 290 (2): 114–121.

    CAS  Google Scholar 

  37. ———. 2005. Mesoscopic patterning in evaporated polymer solutions: New experimental data and physical mechanisms. Langmuir 21 (25): 12053–12053.

    CAS  Google Scholar 

  38. Weh, L. 1999. Self-organized structures at the surface of thin polymer films. Materials Science and Engineering: C 8-9: 463–467.

    Google Scholar 

  39. Weh, L., and A. Venthur. 2004. Evolution of fractal-like surface structures in layers of polyacrylonitrile solutions by interfacial dynamic processes. Journal of Colloid and Interface Science 271 (2): 407–415.

    CAS  Google Scholar 

  40. ———. 2004. Crack patterns in thin polymer layers. Macromolecular Materials and Engineering 289 (3): 227–237.

    CAS  Google Scholar 

  41. Fowler, P.D., et al. 2016. Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. The European Physical Journal E 39 (9): 90.

    Google Scholar 

  42. Nilavarasi, K., and V. Madhurima. 2018. Controlling breath figure patterns on PDMS by concentration variation of ethanol-methanol binary vapors. The European Physical Journal E 41 (7): 82.

    CAS  Google Scholar 

  43. Bormashenko, E., et al. 2008. On the role of the plateau borders in the pattern formation occurring in thin evaporated polymer layers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 312 (2): 245–248.

    CAS  Google Scholar 

  44. Koehler, S.A., et al. 2002. Drainage of single plateau borders: Direct observation of rigid and mobile interfaces. Physical Review E 66 (4): 040601.

    Google Scholar 

  45. Adamson, A.W., and A.P. Gast. 1990. Physical chemistry of surfaces. 6th ed. New York: Wiley-Interscience Publishers.

    Google Scholar 

  46. Erbil, H. Yildirim. 2006. Surface chemistry of solid and liquid interfaces. Oxford: Blackwell.

    Google Scholar 

  47. Marangoni, C. 1871. Sul principio della viscosita’ superficiale dei liquidi stabilito dalsig. J. Plateau. Il Nuovo Cimento (1869–1876) 5 (1): 239–273.

    Google Scholar 

  48. Thomson, J. 1855. XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 10 (67): 330–333.

    Google Scholar 

  49. Boys, C.V. 1911. Soap bubbles: Their Colours and forces which Mould them. 2nd ed. New York: MacMillan Company.

    Google Scholar 

  50. Landau, L.D., and E.M. Lifshitz. 1987. Fluid mechanics. In Course of theoretical physics, ed. L.D. Landau and E.M. Lifshitz, vol. Vol. 6, 2nd ed., 554. Oxford: Butterworth-Heinemann.

    Google Scholar 

  51. Fournier, J., and A. Cazabat. 1992. Tears of wine. EPL (Europhysics Letters) 20 (6): 517.

    CAS  Google Scholar 

  52. Colinet, P., J.C. Legros, and M.G. Velarde. 2001. Nonlinear dynamics of surface-tension-driven instabilities. Berlin: Wiley-VCH.

    Google Scholar 

  53. Nepomnyashchy, A.A., P. Colinet, and M.G. Velarde. 2001. Interfacial phenomena and convection. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  54. Reichenbach, J., and H. Linde. 1981. Linear perturbation analysis of surface-tension-driven convection at a plane interface (Marangoni instability). Journal of Colloid and Interface Science 84 (2): 433–443.

    CAS  Google Scholar 

  55. Mitov, Z., and E. Kumacheva. 1998. Convection-induced patterns in phase-separating polymeric fluids. Physical Review Letters 81 (16): 3427.

    CAS  Google Scholar 

  56. Bormashenko, E., et al. 2010. On the mechanism of patterning in rapidly evaporated polymer solutions: Is temperature-gradient-driven Marangoni instability responsible for the large-scale patterning? Journal of Colloid and Interface Science 343 (2): 602–607.

    CAS  Google Scholar 

  57. ———. 2006. Self-assembly in evaporated polymer solutions: Influence of the solution concentration. Journal of Colloid and Interface Science 297 (2): 534–540.

    CAS  Google Scholar 

  58. De Gennes, P.G. 2001. Instabilities during the evaporation of a film: Non-glassy polymer+ volatile solvent. The European Physical Journal E 6 (1): 421–424.

    Google Scholar 

  59. ———. 2002. Solvent evaporation of spin cast films: “Crust” effects. European Physical Journal E: Soft Matter and Biological Physics 7 (1): 31–34.

    Google Scholar 

  60. Bormashenko, E. 2008. Correct values of Rayleigh and Marangoni numbers for liquid layers deposited on thin substrates. Industrial & Engineering Chemistry Research 47 (5): 1726–1728.

    CAS  Google Scholar 

  61. Fukuhira, Y., et al. 2009. Interfacial tension governs the formation of self-organized honeycomb-patterned polymer films. Soft Matter 5 (10): 2037–2041.

    CAS  Google Scholar 

  62. Huh, M., et al. 2012. Fabrication of honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via the breath figures method. Polymer Engineering & Science 52 (4): 920–926.

    CAS  Google Scholar 

  63. Han, X., et al. 2008. Formation of honeycomb films based on a soluble polyimide synthesized from 2,2′-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenylmethane. Journal of Applied Polymer Science 107 (1): 618–623.

    CAS  Google Scholar 

  64. Chen, J.-Z., et al. 2010. Polymethylene-b-polystyrene diblock copolymer: Synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 48 (9): 1894–1900.

    CAS  Google Scholar 

  65. Cheng, C.X., et al. 2005. Porous polymer films and honeycomb structures based on amphiphilic Dendronized block copolymers. Langmuir 21 (14): 6576–6581.

    CAS  Google Scholar 

  66. Ucar, I.O., and H.Y. Erbil. 2012. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Applied Surface Science 259: 515–523.

    CAS  Google Scholar 

  67. Tian, Y., et al. 2006. Influence of solvents on the formation of honeycomb films by water droplets templating. Macromolecular Chemistry and Physics 207 (5): 545–553.

    CAS  Google Scholar 

  68. Madej, W., et al. 2008. Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir 24 (7): 3517–3524.

    CAS  Google Scholar 

  69. Zhou, X.D., et al. 2001. Effect of the solvent on the particle morphology of spray dried PMMA. Journal of Materials Science 36 (15): 3759–3768.

    CAS  Google Scholar 

  70. Wang, W., et al. 2018. Static miscible vapor environment controlled honeycombed morphology in polystyrene–b–poly(methyl methacrylate) films. Polymer 153: 161–166.

    CAS  Google Scholar 

  71. Cui, L., et al. 2004. Tunable ordered droplets induced by convection in phase-separating P2VP/PS blend film. Polymer 45 (24): 8139–8146.

    CAS  Google Scholar 

  72. Sakurai, S., et al. 2002. Control of mesh pattern of surface corrugation via rate of solvent evaporation in solution casting of polymer film in the presence of convection. Polymer 43 (11): 3359–3364.

    CAS  Google Scholar 

  73. Bunz, U.H.F. 2006. Breath figures as a dynamic templating method for polymers and nanomaterials. Advanced Materials 18 (8): 973–989.

    CAS  Google Scholar 

  74. Kuroda, K., G.A. Caputo, and W.F. DeGrado. 2009. The role of hydrophobicity in the antimicrobial and hemolytic activities of Polymethacrylate derivatives. Chemistry – A European Journal 15 (5): 1123–1133.

    CAS  Google Scholar 

  75. Yabu, H., et al. 2003. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir 19 (15): 6297–6300.

    CAS  Google Scholar 

  76. Maruyama, N., et al. 1998. Mesoscopic pattern formation of nanostructured polymer assemblies. Supramolecular Science 5 (3): 331–336.

    CAS  Google Scholar 

  77. Nishio, T., et al. 2010. Preparation under high humidity conditions of Nanoporous polymer film with 80 nm minimum pore size. Applied Physics Express 3 (2): 025201.

    Google Scholar 

  78. Bormashenko, E. 2015. Surface instabilities and patterning at liquid/vapor interfaces: Exemplifications of the “hairy ball theorem”. Colloids and Interface Science Communications 5: 5–7.

    CAS  Google Scholar 

  79. Park, S.H., and Y. Xia. 1998. Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Advanced Materials 10 (13): 1045–1048.

    CAS  Google Scholar 

  80. Landau, L.D., and E.M. Lifshitz. 1969. Statistical physics: Course of theoretical physics. Vol. 5. 2nd ed. Oxford, UK: Pergamon press.

    Google Scholar 

  81. Saunders, A.E., et al. 2006. Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E 73 (3): 031608.

    Google Scholar 

  82. Adamson, A.W., and A.P. Gast. 1997. Physical chemistry of surfaces. 6th ed. New York: Wiley.

    Google Scholar 

  83. Lothe, J., and G.M. Pound. 1962. Reconsiderations of nucleation theory. The Journal of Chemical Physics 36 (8): 2080–2085.

    CAS  Google Scholar 

  84. Binder, K., and D. Stauffer. 1976. Statistical theory of nucleation, condensation and coagulation. Advances in Physics 25 (4): 343–396.

    CAS  Google Scholar 

  85. Zeldovich, Y.B. 1942. On the theory of formation of new phase cavitation. Journal of Experimental and Theoretical Physics USSR 12: 343–396.

    Google Scholar 

  86. Sigsbee, R. 1969. Vapor to condensed-phase heterogeneous nucleation. In Nucleation, 151–224. New York: Dekker.

    Google Scholar 

  87. Saunders, A.E., et al. 2006. Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics 73: 3.

    Google Scholar 

  88. Matsuyama, H., et al. 2004. The effect of polymer molecular weight on the structure of a honeycomb patterned thin film prepared by solvent evaporation. Journal of Chemical Engineering of Japan 37 (5): 588–591.

    CAS  Google Scholar 

  89. Bormashenko, E., et al. 2005. Formation of honeycomb patterns in evaporated polymer solutions: Influence of the molecular weight. Materials Letters 59 (28): 3553–3557.

    CAS  Google Scholar 

  90. Xu, Y., B. Zhu, and Y. Xu. 2005. A study on formation of regular honeycomb pattern in polysulfone film. Polymer 46 (3): 713–717.

    CAS  Google Scholar 

  91. Beysens, D., and C. Knobler. 1986. Growth of breath figures. Physical Review Letters 57 (12): 1433.

    CAS  Google Scholar 

  92. Marcos-Martin, M., et al. 1995. Self-diffusion and ‘visited’ surface in the droplet condensation problem (breath figures). Physica A: Statistical Mechanics and its Applications 214 (3): 396–412.

    Google Scholar 

  93. Beysens, D. 1995. The formation of dew. Atmospheric Research 39 (1–3): 215–237.

    CAS  Google Scholar 

  94. Stenzel, M.H., C. Barner-Kowollik, and T.P. Davis. 2006. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 44 (8): 2363–2375.

    CAS  Google Scholar 

  95. Zhang, Y., and C. Wang. 2007. Micropatterning of proteins on 3D porous polymer film fabricated by using the breath-figure method. Advanced Materials 19 (7): 913–916.

    CAS  Google Scholar 

  96. Dong, R., et al. 2011. Dimensional architecture of ferrocenyl-based oligomer honeycomb-patterned films: From monolayer to multilayer. Langmuir 27 (14): 9052–9056.

    CAS  Google Scholar 

  97. Govor, L.V., et al. 2001. Self-organized networks based on conjugated polymers. Advanced Materials 13 (8): 588–591.

    CAS  Google Scholar 

  98. Kralchevsky, P.A., K.D. Danov, and N.D. Denkov. 2008. Chemical physics of colloid systems and interfaces. In Handbook of surface and colloid chemistry, 204–384. Boca Raton: CRC Press.

    Google Scholar 

  99. Kralchevsky, P.A., and K. Nagayama. 1994. Capillary forces between colloidal particles. Langmuir 10 (1): 23–36.

    CAS  Google Scholar 

  100. ———. 2000. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Advances in Colloid and Interface Science 85 (2–3): 145–192.

    CAS  Google Scholar 

  101. Kralchevsky, P., et al. 1992. Capillary meniscus interaction between colloidal particles attached to a liquid—Fluid interface. Journal of Colloid and Interface Science 151 (1): 79–94.

    Google Scholar 

  102. Bragg, W.L., and J. Nye. 1947. A dynamical model of a crystal structure. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 190 (1023): 474–481.

    CAS  Google Scholar 

  103. Lomer, W. 1949. The forces between floating bubbles and a quantitative study of the Bragg ‘bubble model’ of a crystal. In Mathematical Proceedings of the Cambridge Philosophical Society 45: 660–673. Cambridge University Press.

    Google Scholar 

  104. Pieranski, P. 1980. Two-dimensional interfacial colloidal crystals. Physical Review Letters 45 (7): 569.

    CAS  Google Scholar 

  105. Fedorets, A.A., et al. 2019. On relative contribution of electrostatic and aerodynamic effects to dynamics of a levitating droplet cluster. International Journal of Heat and Mass Transfer 133: 712–717.

    Google Scholar 

  106. Shavlov, A., and V. Dzhumandzhi. 2016. Metastable states and coalescence of charged water drops inside clouds and fog. Journal of Aerosol Science 91: 54–61.

    CAS  Google Scholar 

  107. Hurd, A.J. 1985. The electrostatic interaction between interfacial colloidal particles. Journal of Physics A: Mathematical and General 18 (16): L1055.

    CAS  Google Scholar 

  108. Masschaele, K., et al. 2010. Finite ion-size effects dominate the interaction between charged colloidal particles at an oil-water interface. Physical Review Letters 105 (4): 048303.

    Google Scholar 

  109. Singh, P., D.D. Joseph, and N. Aubry. 2010. Dispersion and attraction of particles floating on fluid–liquid surfaces. Soft Matter 6 (18): 4310–4325.

    CAS  Google Scholar 

  110. Zhai, S., et al. 2014. Fabrication of porous film with controlled pore size and wettability by electric breath figure method. Journal of Materials Chemistry C 2 (35): 7168–7172.

    CAS  Google Scholar 

  111. ———. 2015. Fabrication of highly ordered porous superhydrophobic polystyrene films by electric breath figure and surface chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 469: 294–299.

    CAS  Google Scholar 

  112. Dong, R., et al. 2011. Tunable morphology of 2D honeycomb-patterned films and the hydrophobicity of a Ferrocenyl-based oligomer. Chemistry–A European Journal 17 (27): 7674–7684.

    CAS  Google Scholar 

  113. Dou, Y., et al. 2015. Breath figure method for construction of honeycomb films. Membranes 5 (3): 399–424.

    CAS  Google Scholar 

  114. Xia, Y., et al. 2003. Self-assembly of monodispersed spherical colloids into complex structures. In Surface and colloid chemistry, ed. K.S. Birdy, 2nd ed. Boca Raton: CRC Press.

    Google Scholar 

  115. Yin, Y., and Y. Xia. 2001. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Advanced Materials 13 (4): 267–271.

    CAS  Google Scholar 

  116. Bormashenko, E., et al. 2008. Mesoscopic patterning in evaporated polymer solutions: Poly (ethylene glycol) and room-temperature-vulcanized Polyorganosilanes/−siloxanes promote formation of honeycomb structures. Macromolecular Chemistry and Physics 209 (6): 567–576.

    CAS  Google Scholar 

  117. De León, A., et al. 2015. Dendritic amphiphiles as additives for honeycomb-like patterned surfaces by breath figures: Role of the molecular characteristics on the pore morphology. Journal of Colloid and Interface Science 440: 263–271.

    Google Scholar 

  118. Wu, C.-H., et al. 2016. Tailored honeycomb-like polymeric films based on amphiphilic poly (urea/malonamide) dendrons. RSC Advances 6 (94): 91981–91990.

    CAS  Google Scholar 

  119. Fedorets, A.A. 2005. On the mechanism of noncoalescence in a droplet cluster. Journal of Experimental and Theoretical Physics Letters 81 (9): 437–441.

    CAS  Google Scholar 

  120. Fedorets, A.A., L.A. Dombrovsky, and A.M. Smirnov. 2015. The use of infrared self-emission measurements to retrieve surface temperature of levitating water droplets. Infrared Physics & Technology 69: 238–243.

    CAS  Google Scholar 

  121. Fedorets, A.A., et al. 2017. Self-assembled levitating clusters of water droplets: Pattern-formation and stability. Scientific Reports 7 (1): 1888.

    Google Scholar 

  122. Eggers, J., J.R. Lister, and H.A. Stone. 1999. Coalescence of liquid drops. Journal of Fluid Mechanics 401: 293–310.

    CAS  Google Scholar 

  123. Aarts, D.G., et al. 2005. Hydrodynamics of droplet coalescence. Physical Review Letters 95 (16): p. 164503.

    Google Scholar 

  124. Karpitschka, S., and H. Riegler. 2014. Sharp transition between coalescence and non-coalescence of sessile drops. Journal of Fluid Mechanics 743.

    Google Scholar 

  125. ———. 2010. Quantitative experimental study on the transition between fast and delayed coalescence of sessile droplets with different but completely miscible liquids. Langmuir 26 (14): 11823–11829.

    CAS  Google Scholar 

  126. ———. 2012. Noncoalescence of sessile drops from different but miscible liquids: Hydrodynamic analysis of the twin drop contour as a self-stabilizing traveling wave. Physical Review Letters 109 (6): 066103.

    Google Scholar 

  127. Dell’Aversana, P., J.R. Banavar, and J. Koplik. 1996. Suppression of coalescence by shear and temperature gradients. Physics of Fluids 8 (1): 15–28.

    Google Scholar 

  128. Neitzel, G.P., and P. Dell’Aversana. 2002. Noncoalescence and nonwetting behavior of liquids. Annual Review of Fluid Mechanics 34 (1): 267–289.

    Google Scholar 

  129. Deegan, R.D., et al. 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653): 827.

    CAS  Google Scholar 

  130. ———. 2000. Contact line deposits in an evaporating drop. Physical Review E 62 (1): 756.

    CAS  Google Scholar 

  131. Hu, H., and R.G. Larson. 2006. Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B 110 (14): 7090–7094.

    CAS  Google Scholar 

  132. ———. 2005. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9): 3972–3980.

    CAS  Google Scholar 

  133. Ma, H., and J. Hao. 2010. Evaporation-induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chemistry–A European Journal 16 (2): 655–660.

    CAS  Google Scholar 

  134. Li, J., et al. 2005. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir 21 (5): 2017–2021.

    CAS  Google Scholar 

  135. Saito, Y., M. Shimomura, and H. Yabu. 2014. Breath figures of nanoscale bricks: A universal method for creating hierarchic porous materials from inorganic nanoparticles stabilized with mussel-inspired copolymers. Macromolecular Rapid Communications 35 (20): 1763–1769.

    CAS  Google Scholar 

  136. Saunders, A.E., et al. 2004. Inverse opal nanocrystal superlattice films. Nano Letters 4 (10): 1943–1948.

    CAS  Google Scholar 

  137. Escalé, P., et al. 2016. When block copolymer self-assembly in hierarchically ordered honeycomb films depicts the breath figure process. Soft Matter 12 (3): 790–797.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Hernández, J., Bormashenko, E. (2020). Breath-Figures Formation: Physical Aspects. In: Breath Figures . Springer, Cham. https://doi.org/10.1007/978-3-030-51136-4_2

Download citation

Publish with us

Policies and ethics