Skip to main content

Imaging Cardiac Metabolism

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology

Abstract

Cardiac metabolism refers to a complex system of interconnected chemical reactions. In broad terms, metabolism provides the energy for contraction and the materials for the heart’s structure and function. A defining feature of metabolism is the flux of chemical compounds that can be traced by physical methods, including radioactive decay of tracers or magnetic resonance spectroscopy. Metabolic activity is a dynamic process found only in living cells and tissues. In addition to the dynamic nature of metabolic activity, intermediary metabolites also control cell function, either as regulators of enzyme activity or as posttranslational modifiers of protein function and transcriptional activity. An important recent development in the field of nuclear cardiology is the concept that metabolic remodeling of the heart precedes, triggers, and sustains structural and functional remodeling, and that metabolism is inextricably linked to both physiology and molecular biology of the heart. This concept offers unprecedented opportunities for metabolic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, et al. American Heart Association Council on basic cardiovascular sciences. Assessing cardiac metabolism: a scientific statement from the American Heart Association. Circ Res. 2016;118:1659–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kundu B, Zhong M, Sen S, Davogustto G, Keller S, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology. 2015;130:211–20.

    Article  CAS  PubMed  Google Scholar 

  3. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015:202–13.

    Article  CAS  PubMed  Google Scholar 

  4. Taegtmeyer H, Lam T, Davogustto G. Cardiac metabolism in perspective. Compr Physiol. 2016;6:1675–99.

    Article  PubMed  Google Scholar 

  5. Davogustto G, Taegtmeyer H. The changing landscape of cardiac metabolism. J Mol Cell Cardiol. 2015;84:129–32.

    Article  CAS  PubMed  Google Scholar 

  6. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980;186:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Osterholt M, Sen S, Dilsizian V, Taegtmeyer H. Targeted metabolic imaging to improve the management of heart disease. JACC Cardiovasc Imaging. 2012;5:214–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Depre C, Young ME, Ying J, Ahuja HS, Han Q, Garza N, et al. Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction. J Mol Cell Cardiol. 2000;32:985–96.

    Article  CAS  PubMed  Google Scholar 

  9. Goodwin GW, Taylor CS, Taegtmeyer H. Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem. 1998;273:29530–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen VT, Mossberg KA, Tewson TJ, Wong WH, Rowe RW, Coleman GM, Taegtmeyer H. Temporal analysis of myocardial glucose metabolism by 2-[18F]fluoro-2-deoxy-D-glucose. Am J Phys. 1990;259:H1022–31.

    CAS  Google Scholar 

  11. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18:1692–700.

    Article  CAS  PubMed  Google Scholar 

  12. Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation. 2002;105:1727–33.

    Article  CAS  PubMed  Google Scholar 

  13. Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, et al. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med. 1998;4:1269–75.

    Article  CAS  PubMed  Google Scholar 

  14. Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GD, Crapo JD, et al. Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation. 2005;112:407–15.

    Article  CAS  PubMed  Google Scholar 

  15. Feinendegen LE. Myocardial imaging of lipid metabolism with labeled fatty acids. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk: Futura; 2000. p. 349–89.

    Google Scholar 

  16. Messina SA, Aras O, Dilsizian V. Delayed recovery of fatty acid metabolism after transient myocardial ischemia: a potential imaging target for “ischemic memory”. Curr Cardiol Rep. 2007;9:159–65.

    Article  PubMed  Google Scholar 

  17. Gropler RJ, Siegel BA, Sampathkumaran K, Pérez JE, Sobel BE, Bergmann SR, Geltman EM. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol. 1992;19:989–97.

    Article  CAS  PubMed  Google Scholar 

  18. Gropler RJ, Geltman EM, Sampathkumaran K, Pérez JE, Moerlein SM, Sobel BE, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol. 1992;20:569–77.

    Article  CAS  PubMed  Google Scholar 

  19. Schelbert HR. Principles of positron emission tomography. In: Skorton DJ, Schelbert HR, Wolf GL, Brundage BH, editors. Marcus cardiac imaging: a companion to Braunwald’s heart disease. 2nd ed. Philadelphia: WB Saunders; 1996. p. 1063–92.

    Google Scholar 

  20. Dilsizian V, Bacharach SL, Beanlands SR, Bergmann SR, Delbeke D, Fischman AJ, et al. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16:651. https://doi.org/10.1007/s12350-009-9094-9.

    Article  Google Scholar 

  21. Dilsizian V. Perspectives on the study of human myocardium: viability. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk: Futura; 2000. p. 3–22.

    Google Scholar 

  22. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dilsizian V, Arrighi JA. Myocardial viability in chronic coronary artery disease: perfusion, metabolism and contractile reserve. In: Gerson MC, editor. Cardiac nuclear medicine. 3rd ed. New York: McGraw-Hill; 1996. p. 143–91.

    Google Scholar 

  24. Eitzman D, Al-aouar Z, Kanter HL, vom Dahl J, Kirsh M, Deeb GM, Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992;20:559–65.

    Article  CAS  PubMed  Google Scholar 

  25. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73:527–33.

    Article  PubMed  Google Scholar 

  26. Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, Maddahi J. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation. 1995;92:3436–44.

    Article  PubMed  Google Scholar 

  27. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, Schwaiger M. Preoperative positron emission tomography viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol. 1997;30:1693–700.

    Article  CAS  PubMed  Google Scholar 

  28. Srinivasan G, Kitsiou AN, Bacharach SL, Bartlett ML, Miller-Davis C, Dilsizian V. 18F-fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation. 1998;97:843–50.

    Article  CAS  PubMed  Google Scholar 

  29. Dilsizian V. FDG uptake as a surrogate marker for antecedent ischemia. J Nucl Med. 2008;49:1909–11.

    Article  PubMed  Google Scholar 

  30. Camici P, Araujo LI, Spinks T, Lammertsma AA, Kaski JC, Shea MJ, et al. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation. 1986;74:81–8.

    Article  CAS  PubMed  Google Scholar 

  31. He ZX, Shi RF, Wu YJ, Tian YQ, Liu XJ, Wang SW, et al. Direct imaging of exercise-induced myocardial ischemia with fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi in coronary artery disease. Circulation. 2003;108:1208–13.

    Article  CAS  PubMed  Google Scholar 

  32. Dou KF, Yang MF, Yang YJ, Jain D, He ZX. Myocardial 18F-FDG uptake after exercise-induced myocardial ischemia in patients with coronary artery disease. J Nucl Med. 2008;49:1986–91.

    Article  PubMed  Google Scholar 

  33. Taegtmeyer H, Dilsizian V. Imaging myocardial metabolism and ischemic memory. Nat Clin Pract Cardiovasc Med. 2008;5:S42–8.

    Article  CAS  PubMed  Google Scholar 

  34. Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, et al. Metabolic imaging with beta-methyl-para-[123I]-iodophenyl-pentadecanoic acid (BMIPP) identifies ischemic memory following demand ischemia. Circulation. 2005;112:2169–74.

    Article  PubMed  Google Scholar 

  35. Krebs H. The Pasteur effect and the relation between respiration and fermentation. Essays Biochem. 1972;8:1–34.

    CAS  PubMed  Google Scholar 

  36. Di Carli MF, Prcevski P, Singh TP, Janisse J, Ager J, Muzik O, Vander HR. Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med. 2000;41:1227–34.

    PubMed  Google Scholar 

  37. Dickfeld T, Lei P, Dilsizian V, Jeudy J, Dong J, Voudouris A, et al. Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. JACC Cardiovasc Imaging. 2008;1:73–82.

    Article  PubMed  Google Scholar 

  38. United States Renal Data System. 2018 USRDS annual data report: Epidemiology of kidney disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2018.

    Google Scholar 

  39. Tyralla K, Amann K. Morphology of the heart and arteries in renal failure. Kidney Int. 2003;63:S80–3.

    Article  Google Scholar 

  40. Nishimura M, Tsukamoto K, Hasebe N, Tamaki N, Kikuchi K, Ono T. Prediction of cardiac death in hemodialysis patients by myocardial fatty acid imaging. J Am Coll Cardiol. 2008;51:139–45.

    Article  CAS  PubMed  Google Scholar 

  41. Lodge MA. Evidence for inverse relationship between myocardial glucose utilization with PET and severity of renal dysfunction [abstract]. J Nucl Med. 2007;48(Suppl 2):108P.

    Google Scholar 

  42. Nishimura M, Hashimoto T, Kobayashi H, Fukuda T, Okino K, Yamamoto N, et al. Myocardial scintigraphy using a fatty acid analogue detects coronary artery disease in hemodialysis patients. Kidney Int. 2004;66:811–9.

    Article  PubMed  Google Scholar 

  43. Dilsizian V, Fink J. Deleterious effect of altered myocardial fatty acid metabolism in kidney disease. J Am Coll Cardiol. 2008;51:146–8.

    Article  CAS  PubMed  Google Scholar 

  44. Fink JC, Lodge MA, Smith MF, Hinduja A, Brown J, Dinits-Pensy MY, Dilsizian V. Pre-clinical myocardial metabolic alterations in chronic kidney disease. Cardiology. 2010;116:160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111:2198–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Taegtmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taegtmeyer, H., Dilsizian, V. (2021). Imaging Cardiac Metabolism. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-49885-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49885-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49884-9

  • Online ISBN: 978-3-030-49885-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics