Skip to main content

History of Nuclear Cardiology

  • Chapter
  • First Online:
Atlas of Nuclear Cardiology
  • 871 Accesses

Abstract

The field of Nuclear Cardiology utilizes the unique properties of radiopharmaceuticals to characterize the pathophysiology of cardiovascular diseases. The images can be used to calculate global and regional function, perfusion, innervation, and apoptosis, among other characteristics. The ability to perform these measurements is the aggregate result of thousands of investigations and publications by dedicated investigators. This chapter describes some of the key contributions made by a few of these investigators and the role of their contributions in the development of this vibrant field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berkeley Lab. The discovery of radioactivity. https://www2.lbl.gov/abc/wallchart/chapters/03/4.html.

  2. The Nobel Prize in Physics. 1903. http://www.nobelprize.org/nobel_prizes/physics/laureates/1903.

  3. Blumgart HL, Yens OC. Studies on the velocity of blood flow: I. The method utilized. J Clin Invest. 1927;4:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patton DD. The birth of nuclear medicine instrumentation: Blumgart and Yens, 1925. J Nucl Med. 2003;44:1362–5.

    PubMed  Google Scholar 

  5. Roguin A. Myron Prinzmetal 1908-1987: the man behind the variant angina. Int J Cardiol. 2008;123:129–30.

    Article  PubMed  Google Scholar 

  6. Prinzmetal M, Corday E, Bergman HC, Schwartz L, Spritzler RJ. Radiocardiography: a new method for studying blood flow through the chambers of the heart in human beings. Science. 1948;108:340–1.

    Article  CAS  PubMed  Google Scholar 

  7. Donato L, Holmes RA, Wagner HN. The circulation. In: Wagner HN, editor. Principles of nuclear medicine. Philadelphia: WB Saunders; 1968. p. 531–83.

    Google Scholar 

  8. Rejali AM, MacIntyre WJ, Friedell HL. A radioisotope method of visualization of blood pools. Am J Roentgenol Radium Therapy Nucl Med. 1958;79:129–37.

    CAS  Google Scholar 

  9. Rosenthall L. Detection of pericardial effusion by radioisotope heart scanning. Can Med Assoc J. 1964;90:447–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tapscott E. Nuclear medicine pioneer, Hal O. Anger, 1920-2005. J Nucl Med Technol. 2005;33:250–3.

    PubMed  Google Scholar 

  11. Anger HO. Scintillation camera with multichannel collimators. J Nucl Med. 1964;5:515–31.

    CAS  PubMed  Google Scholar 

  12. Gottschalk A, McCormack KR, Adams JE, Anger HO. A comparison of results of brain scanning using 68Ga EDTA and the positron scintillation camera, with 203Hg neohydrin and the conventional focused collimator scanner. Radiology. 1965;84:502–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gottschalk A. The early years with Hal Anger. Semin Nucl Med. 1996;26:171–9.

    Article  CAS  PubMed  Google Scholar 

  14. Gottschalk A. Hal Anger, nuclear medicine's quiet genius. J Nucl Med. 2004;45:13N–26N.

    PubMed  Google Scholar 

  15. Schelbert HR, Verba JW, Johnson AD, Brock GW, Alazraki NP, Rose FJ, Ashburn WL. Nontraumatic determination of left ventricular ejection fraction by radionuclide angiocardiography. Circulation. 1975;51:902–9.

    Article  CAS  PubMed  Google Scholar 

  16. Strauss HW, Zaret BL, Hurley PJ, Natarajan TK, Pitt B. A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol. 1971;28:575–80.

    Article  CAS  PubMed  Google Scholar 

  17. Zaret BL, Strauss HW, Hurley PJ, Natarajan TK, Pitt B. A noninvasive scintiphotographic method for detecting regional ventricular dysfunction in man. N Engl J Med. 1971;284:1165–70.

    Article  CAS  PubMed  Google Scholar 

  18. Secker-Walker RH, Resnick L, Kunz H, Parker JA, Hill RL, Potchen EJ. Measurement of left ventricular ejection fraction. J Nucl Med. 1973;14:798–802.

    CAS  PubMed  Google Scholar 

  19. Harris CC. Hevesy nuclear medicine pioneer lecture (Monte Blau, Merrill A. Bender). J Nucl Med. 1980;21:609–11.

    CAS  PubMed  Google Scholar 

  20. Cannon PJ, Schmidt DH, Weiss MB, Fowler DL, Sciacca RR, Ellis K, Casarella WJ. The relationship between regional myocardial perfusion at rest and arteriographic lesions in patients with coronary atherosclerosis. J Clin Invest. 1975;56:1442–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carr EA Jr, Beierwaltes WH, Wegst AV, Bartlett JD Jr. Myocardial scanning with rubidium-86. J Nucl Med. 1962;3:76–82.

    PubMed  Google Scholar 

  22. Carr EA Jr, Beierwaltes WH, Patno ME, Bartlett JD Jr, Wegst AV. The detection of experimental myocardial infarcts by photoscanning. A preliminary report. Am Heart J. 1962;64:650–60.

    Article  PubMed  Google Scholar 

  23. Burch G, Threefoot S, Ray C. The rate of disappearance of Rb86 from the plasma, the biologic decay rates of Rb86, and the applicability of Rb86 as a tracer of potassium in man with and without chronic congestive heart failure. J Lab Clin Med. 1955;45:371–94.

    CAS  PubMed  Google Scholar 

  24. Hurley PJ, Cooper M, Reba RC, Poggenburg KJ, Wagner HN Jr. 43KCl: a new radiopharmaceutical for imaging the heart. J Nucl Med. 1971;12:516–9.

    CAS  PubMed  Google Scholar 

  25. Zaret BL, Strauss HW, Martin ND, Wells HP Jr, Flamm MD. Noninvasive regional myocardial perfusion with radioactive potassium. Study of patients at rest, with exercise and during angina pectoris. N Engl J Med. 1973;288:809–12.

    Article  CAS  PubMed  Google Scholar 

  26. Strauss HW, Zaret BL, Martin ND, Wells HP Jr, Flamm MD. Noninvasive evaluation of regional myocardial perfusion with potassium 43. Technique in patients with exercise-induced transient myocardial ischemia. Radiology. 1973;108:85–90.

    Article  CAS  PubMed  Google Scholar 

  27. Lebowitz E, Greene MW, Fairchild R, Bradley-Moore PR, Atkins HL, Ansari AN, et al. Thallium-201 for medical use. I J Nucl Med. 1975;16:151–5.

    CAS  PubMed  Google Scholar 

  28. Pohost GM, Zir LM, Moore RH, McKusick KA, Guiney TE, Beller GA. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation. 1977;55:294–302.

    Article  CAS  PubMed  Google Scholar 

  29. Pohost GM, Okada RD, O'Keefe DD, Gewirtz H, Beller G, Strauss HW, et al. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circ Res. 1981;48:439–46.

    Article  CAS  PubMed  Google Scholar 

  30. Holman BL, Jones AG, Lister-James J, Davison A, Abrams MJ, Kirshenbaum JM, et al. A new Tc-99m-labeled myocardial imaging agent, hexakis(t-butylisonitrile)-technetium(I) [Tc-99m TBI]: initial experience in the human. J Nucl Med. 1984;25:1350–5.

    CAS  PubMed  Google Scholar 

  31. Keyes JW Jr, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The humongotron–a scintillation-camera transaxial tomograph. J Nucl Med. 1977;18:381–7.

    PubMed  Google Scholar 

  32. Prigent FM, Maddahi J, Garcia E, Friedman J, Van Train K, Bietendorf J, et al. Thallium-201 stress-redistribution myocardial rotational tomography: development of criteria for visual interpretation. Am Heart J. 1985;109:274–81.

    Article  CAS  PubMed  Google Scholar 

  33. Germano G, Kavanagh PB, Berman DS. An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images. Int J Card Imaging. 1997;13:337–46.

    Article  CAS  PubMed  Google Scholar 

  34. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. European Association of Nuclear Medicine (EANM). EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;42:1929–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gould KL. Coronary artery stenosis. New York: Elsevier; 1991.

    Google Scholar 

  36. Albro PC, Gould KL, Westcott RI, Hamilton GW, Ritchie JL, Williams DL. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation III. Clinical trial. Am J Cardiol. 1978;42:751–60.

    Article  CAS  PubMed  Google Scholar 

  37. Hoop B Jr, Smith TW, Burnham CA, Correll JE, Brownell GL, Sanders CA. Myocardial imaging with 13 NH 4+ and a multicrystal positron camera. J Nucl Med. 1973;14:181–3.

    CAS  PubMed  Google Scholar 

  38. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114:89–98.

    Article  CAS  PubMed  Google Scholar 

  39. Dorbala S, Di Carli MF. Cardiac PET perfusion: prognosis, risk stratification, and clinical management. Semin Nucl Med. 2014;44:344–57.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, Schelbert HR. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983;67:766–78.

    Article  CAS  PubMed  Google Scholar 

  41. Bax JJ, Visser FC, Poldermans D, Elhendy A, Cornel JH, Boersma E, et al. Relationship between preoperative viability and postoperative improvement in LVEF and heart failure symptoms. J Nucl Med. 2001;42:79–86.

    CAS  PubMed  Google Scholar 

  42. Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol. 2001;11:1968–74.

    Article  CAS  PubMed  Google Scholar 

  43. Vallabhajosula S, Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med. 1997;38:1788–96.

    CAS  PubMed  Google Scholar 

  44. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, Klutmann S. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51:862–5.

    Article  PubMed  Google Scholar 

  45. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. JACC Cardiovasc Imaging. 2017;10:582–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strauss, H.W. (2021). History of Nuclear Cardiology. In: Dilsizian, V., Narula, J. (eds) Atlas of Nuclear Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-49885-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49885-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49884-9

  • Online ISBN: 978-3-030-49885-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics