Skip to main content

Accumulation of Heavy Metals in Medicinal and Aromatic Plants

  • Chapter
  • First Online:
Plant Micronutrients

Abstract

Heavy metal (HM) pollution causes various issues to both plants and animals. Therefore, growing plant species that have the greater efficiency to accumulate these toxic metals without exhibiting any symptoms can be a vital step to control HM toxicity. These plant species can act in two ways; firstly it involves the phytoremediation process in which plants directly remove contaminants from the soil and secondly through phytomining in which plants are grown to harvest toxic metals. Furthermore, such processes can be used to accumulate essential nutrients and food fortification as well. Basically, hyperaccumulator plant species are those that belong to distantly related families and have the ability to grow on soils contaminated with HMs and accumulate them in their aerial parts in extraordinarily high concentrations as compared to other plant species without exhibiting any phytotoxic effects. One can distinguish hyperaccumulators from non-hyperaccumulators on the basis of higher rate of HM uptake, faster root-to-shoot translocation, and greater ability to detoxify and sequester HMs in leaves. Moreover, comparative physiological and molecular analyses have revealed that there is a differential regulation and expression of genes involved in hyperaccumulator and non-hyperaccumulator plant species. Genes that play an important role in the regulation of hyper-accumulation process in such plant species include the members of ALMT, ZIP, MATE, HMA, YSL, MTP, and ABC families. Among the various hypotheses proposed to explain the hyper-accumulation phenomenon in plants, two of them which include “elemental defense” and “joint effect” hypotheses have been mostly accepted in relation to HM tolerance in plants. This chapter also deals with the application of hyperaccumulator aromatic and medicinal plants in phytoremediation, phytomining, phytoextraction, phytostabilization, and gene stacking strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, S., & Sarem, S. M. (2010). The potential of Chrysanthemum and Pelargonium for phytoextraction of lead-contaminated soils. Journal of Civil Engineering, 4, 409–416.

    Google Scholar 

  • Ahmad, R., & Misra, N. (2014). Evaluation of phytoremediation potential of Catharanthus roseus with respect to chromium contamination. American Journal of Plant Sciences, 5, 2378–2388.

    Article  CAS  Google Scholar 

  • Akoumianaki-Ioannidou, A., Kalliopi, P., Pantelis, B., & Moustakas, N. (2015). The effects of Cd and Zn interactions on the concentration of Cd and Zn in sweet bush basil (Ocimum basilicum L.) and peppermint (Mentha piperita L). Fresenius Environmental Bulletin, 24(1), 77–83.

    Google Scholar 

  • Alamo-Nole, L., & Su, Y. F. (2017). Translocation of cadmium in Ocimum basilicum at low concentration of CdSSe nanoparticles. Applied Materials Today, 9, 314–318.

    Article  Google Scholar 

  • Angelova, V. R., Grekov, D. F., Kisyov, V. K., & Ivanov, K. I. (2015). Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 9, 465–472.

    Google Scholar 

  • Assuncao, A. G. L., Bleeker, P., ten Bookum, W. M., Vooijs, R., & Schat, H. (2008). Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: Evidence from binary metal exposures. Plant and Soil, 303, 289–299. https://doi.org/10.1007/s11104-007-9508-x.

    Article  CAS  Google Scholar 

  • Assuncao, A. G. L., Martins, P. D. C., Folter, S. D., Voojis, R., Schat, H., & Aarts, M. G. M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 24, 217–226.

    Article  CAS  Google Scholar 

  • Axelsen, K. B., & Palmgren, M. G. (1998). Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 126, 696–706.

    Article  Google Scholar 

  • Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41–49.

    Article  Google Scholar 

  • Bennet, L. E., Burkhead, J. L., Hale, K. L., Terry, N., Pilon, M., & Pilon-Smits, E. A. H. (2003). Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Journal of Environmental Quality, 32, 432–440.

    Article  Google Scholar 

  • Berken, A., Mulholland, M. M., LeDuc, D. L., & Terry, N. (2002). Genetic engineering of plants to enhance selenium phytoremediation. Critical Reviews in Plant Sciences, 21, 567–582.

    Article  CAS  Google Scholar 

  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, R. S. (1998). Hyperaccumulation as a plant defensive strategy. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals (pp. 181–201). Oxford: CAB International.

    Google Scholar 

  • Boyd, R. S. (2007). The defence hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant and Soil, 293, 153–176.

    Article  CAS  Google Scholar 

  • Boyd, R. S. (2009). High-nickel insects and nickel hyperaccumulator plants: A review. Insect Science, 16, 19–31.

    Article  CAS  Google Scholar 

  • Boyd, R. S., & Martens, S. N. (1992). The raison d’être for metal hyperaccumulation by plants. In A. J. M. Baker, J. Proctor, & R. D. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils (pp. 279–289). Andover: Intercept Limited.

    Google Scholar 

  • Brewer, E. P., Saunders, J. A., Angle, J. S., Chaney, R. L., & McIntosh, M. S. (1999). Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theoretical and Applied Genetics, 99, 761–771.

    Article  CAS  Google Scholar 

  • Callahan, D. L., Baker, A. J. M., Kolev, S. D., & Wedd, A. G. (2006). Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry, 11, 2–12.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K. F., Yeh, T. Y., & Lin, C. F. (2012). Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides): Hydroponic and pot experiments. ISRN Ecology 2012, 1 12. https://doi.org/10.5402/2012/729693.

  • Chiang, H. C., Lo, J. C., & Yeh, K. C. (2006). Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: A genomic survey with cDNA microarray. Environmental Science & Technology, 40, 6792–6798.

    Article  CAS  Google Scholar 

  • Deng, D. M., Shu, W. S., Zhang, J., Zou, H. L., Lin, Z., Ye, H., & Wong, M. H. (2007). Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environmental Pollution, 147, 381–386.

    Article  CAS  PubMed  Google Scholar 

  • do Nascimento, C. W. A., Amarasiriwardena, D., & Xing, B. S. (2006). Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, 140, 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J. L., Quinn, C. F., Marcus, M. A., Fakra, S., & Pilon-Smits, E. A. H. (2006). Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Current Biology, 16, 2181–2192.

    Article  CAS  PubMed  Google Scholar 

  • Frerot, H., Faucon, M. P., Willems, G., Gode, C., Couseaux, A., Darracq, A., Verbruggen, N., & Laprade, P. S. (2010). Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: The essential role of QTL X environment interactions. The New Phytologist, 187(2), 355–367.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K., & Ma, J. F. (2007). An aluminum activated citrate transporter in barley. Plant & Cell Physiology, 48, 1081–1091.

    Article  CAS  Google Scholar 

  • Gleba, D., Borisjuk, N. V., Borisjuk, L. G., Kneer, R., Poulev, A., Skarzhinskaya, M., Dushenkov, S., Logendra, S., Gleba, Y. Y., & Raskin, I. (1999). Use of plant roots for phytoremediation and molecular farming. Proceedings of the National Academy of Sciences of the United States of America, 96, 5973–5977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratao, P. L., Prasad, M. N. V., Cardoso, P. F., Lea, P. J., & Azevedo, R. A. (2005). Phytoremediation: Green technology for the clean-up of toxic metals in the environment. Brazilian Journal of Plant Physiology, 17, 53–64.

    Article  CAS  Google Scholar 

  • Gunwal, I., Singh, L., & Mago, P. (2014). Comparison of phytoremediation of cadmium and nickel from contaminated soil by Vetiveria zizanioides L. International Journal of Scientific and Research Publications, 4(10), 1–7.

    Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hamzah, A., Hapsari, R. I., & Wisnubroto, E. I. (2016). Phytoremediation of cadmium-contaminated agricultural land using indigenous plants. The International Journal of Environmental and Agriculture Research (IJOEAR), 2(1), 8–14.

    Google Scholar 

  • Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., & Kramer, U. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, E. (2016). Comparative study on the biosorption of Pb (II), Cd (II) and Zn (II) using Lemon grass (Cymbopogon citratus): Kinetics, isotherms and thermodynamics. Chemistry International, 2(2), 89–102.

    Google Scholar 

  • Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. The New Phytologist, 174, 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Hu, N., Ding, D., & Li, G. (2014). Natural plant selection for radioactive waste remediation. In D. K. Gupta & C. Walther (Eds.), Radionuclide contamination and remediation through plants (pp. 33–53). Cham: Springer. https://doi.org/10.1007/978–3-319-07665-2_2.

    Google Scholar 

  • Huang, C. F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., & Ma, J. F. (2009). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell, 21, 655–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhee, E. M., Boyd, R. S., & Eubanks, M. D. (2006). Effectiveness of metal-metal and metal-organic compounds combinations against Plutella xylostella (Lepidoptera: Plutellidae): Implication for plant elemental defence. Journal of Chemical Ecology, 32, 239–259.

    Article  CAS  PubMed  Google Scholar 

  • Jisha, C. K., Bauddh, K., & Shukla, S. K. (2017). Phytoremediation and bioenergy production efficiency of medicinal and aromatic plants. Phytoremediation Potential of Bioenergy Plants, 287–304. https://doi.org/10.1007/978-981-10-3084-0_11.

  • Kawashima, C. G., Noji, M., Nakamura, M., Ogra, Y., Suzuki, K. T., & Saito, K. (2004). Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnology Letters, 26, 153–157.

    Article  CAS  PubMed  Google Scholar 

  • Kramer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.

    Article  PubMed  CAS  Google Scholar 

  • Krzciuk, K., & Galuszka, A. (2015). Prospecting for hyperaccumulators of trace elements: A review. Critical Reviews in Biotechnology, 35, 522–532. https://doi.org/10.3109/07388551.2014.922525.

    Article  CAS  PubMed  Google Scholar 

  • La Rocca, N., Andreoli, C., Giacometti, G. M., Rascio, N., & Moro, I. (2009). Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica, 47, 471–479.

    Article  CAS  Google Scholar 

  • LeDuc, D. L., & Terry, N. (2005). Phytoremediation of toxic trace elements in soil and water. The Journal of Industrial Microbiology and Biotechnology, 32, 514–520.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Bae, H., Jeong, J., Lee, J. Y., Yang, Y. Y., Hwang, I., Martinoia, E., & Lee, Y. (2003). Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiology, 133, 589–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, L. Y., Lee, X. J., Chia, P. C., Tan, K. W., & Gan, S. (2014). Utilisation of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: Equilibrium, kinetic, thermodynamics and mechanism studies. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1764–1772.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2001). Phytoremediation of heavy metal contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Malik, B., Pirzadah, T. B., Tahir, I., & Rehman, R. U. (2019). Growth and physiological responses in chicory towards mercury induced in vitro oxidative stress. Plant Physiology Reports, 24(2), 236–248.

    Article  CAS  Google Scholar 

  • Malinowska, E., & Jankowski, K. (2017). Copper and zinc concentrations of medicinal herbs and soil surrounding ponds on agricultural land. Landscape and Ecological Engineering, 13(1), 183–188.

    Article  Google Scholar 

  • Mangkoedihardjo, S., & Triastuti, Y. (2011). Vetiver in phytoremediation of mercury polluted soil with the addition of compost. Journal of Applied Sciences Research, 7(4), 465–469.

    CAS  Google Scholar 

  • Manikandan, R., Sahi, S. V., & Venkatachalam, P. (2015). Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: A potential hyperaccumulator plant. Scientific World Journal. https://doi.org/10.1155/2015/715217.

  • Navari-Izzo, F., Pinzino, C., Quartacci, M. F., & Sgherri, C. (1999). Superoxide and hydroxyl radical generation, and superoxide dismutase in PSII membrane fragments from wheat. Free Radical Research, 31, S3–S9.

    Article  CAS  PubMed  Google Scholar 

  • Ng, C. C., Boyce, A. N., Rahman, M., & Abas, R. (2017). Tolerance threshold and phyto-assessment of cadmium and lead in Vetiver grass, Vetiveria zizanioides (Linn.) Nash. Chiang Mai Journal of Science, 44(4), 1367–1368.

    CAS  Google Scholar 

  • Nkrumah, P. N., Echevarria, G., Erskine, P. D., & der Ent, A. V. (2018). Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Scientific Reports, 8, 9659. https://doi.org/10.1038/s41598-018-26859-72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagliano, C., Raviola, M., Vecchia, F. D., Gabbrielli, R., Gonnelli, C., Rascio, N., Barbato, R., & Rocca, N. L. (2006). Evidence for PSII-donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). The Journal of Photochemistry and Photobiology B: Biology, 84, 70–78.

    Article  CAS  Google Scholar 

  • Patra, H. K., Marndi, D. S., & Mohanty, M. (2015). Chromium toxicity, physiological responses and tolerance potential of lemon grass (Cymbopogon flexuosus Nees ex steud. wats.). Annals of Plant Science, 4(05), 1080–1084.

    Google Scholar 

  • Pereira, B. F. F., de Abreu, C. A., Herpin, U., de Abreu, M. F., & Berton, R. S. (2010). Phytoremediation of lead by jack beans on a Rhodic Hapludox amended with EDTA. Scientia Agricola, 67, 308–318.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Pirzadah, T. B., Malik, B., Tahir, I., Irfan, Q. M., & Rehman, R. U. (2018). Characterization of mercury induced stress biomarkers in Fagopyrum tataricum plants. International Journal of Phytoremediation, 20(3), 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Pirzadah, T. B., Malik, B., & Dar, F. A. (2019b). Phytoremediation potential of aromatic and medicinal plants: A way forward for green economy. The Journal of Stress Physiology & Biochemistry, 15(3), 62–75.

    CAS  Google Scholar 

  • Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., & Rehman, R. U. (2019a). Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species. Plant Physiology and Biochemistry, 144, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Poynton, C. Y., Huang, J. W. W., Blaylock, M. J., Kochian, L. V., & Ellass, M. P. (2004). Mechanisms of arsenic hyperaccumulation in Pteris species: Root As influx and translocation. Planta, 219, 1080–1088.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, A., Singh, A. K., Chand, S., Chanotiya, C. S., & Patra, D. D. (2010). Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Communications in Soil Science and Plant Analysis, 41(18), 2170–2186.

    Article  CAS  Google Scholar 

  • Przybylowics, W. J., Pineda, C. A., Prozesky, V. M., & Mesjasz-przybylowicz, J. (1995). Investigation of Ni hyperaccumulation by true elemental imaging. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 104, 176–181.

    Article  Google Scholar 

  • Qin, F., Shan, X. Q., & Wei, B. (2004). Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere, 57, 253–263.

    Article  CAS  PubMed  Google Scholar 

  • Quartacci, M. F., Cosi, E., & Navari-Izzo, F. (2001). Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency and excess. Journal of Experimental Botany, 152, 67–75.

    Google Scholar 

  • Quartacci, M. F., Irtelli, B., Baker, A. J. M., & Navari-Izzo, F. (2007). The use of NTA and EDDS for enhanced phytoextraction of metals from multiply contaminated soil by Brassica carinata. Chemosphere, 68, 1920–1928.

    Article  CAS  PubMed  Google Scholar 

  • Raab, A., Feldman, J., & Meharg, A. A. (2004). The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiology, 134, 1113–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai, U. N., Vajpayee, P., Singh, S. N., & Mehrotra, S. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Science, 167, 1159–1169.

    Article  CAS  Google Scholar 

  • Ramazanpour, H. (2015). Study effect of soil and amendments on phytoremediation of cadmium (Cd) and lead (Pb) from contaminated soil by rosemary (Rosmarinus officinalis L.) [doctoral dissertation]. Zabol: University of Zabol.

    Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181. https://doi.org/10.1016/j.plantsci.2010.08.016.

    Article  CAS  PubMed  Google Scholar 

  • Rascio, N., Vecchia, F. D., La Rocca, N., Barbato, R., Pagliano, C., Raviolo, M., Gonnelli, C., & Gabbrielli, R. (2008). Metal accumulation and damage in rice (cv. Vialone Nano) seedlings exposed to cadmium. Environmental and Experimental Botany, 62(3), 267–278.

    Article  CAS  Google Scholar 

  • Reeves, R. (2006). Hyperaccumulation of trace elements by plants. In J. L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils (pp. 25–52). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Reeves, R. D., Schwartz, C., Morel, J. L., & Edmondson, J. (2001). Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. International Journal of Phytoremediation, 3, 145–172. https://doi.org/10.1080/15226510108500054.

    Article  CAS  Google Scholar 

  • Roosens, N., Verbruggen, N., Meerts, P., Ximenez-Embun, P., & Smith, J. A. C. (2003). Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant, Cell & Environment, 26, 1657–1672.

    Article  CAS  Google Scholar 

  • Ryan, P. R., Tyerman, S. D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W. H., & Delhaize, E. (2011). The identification of aluminium resistance genes provides opportunities for enhancing crop production on acid soils. Journal of Experimental Botany, 62, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Sa, R. A., Alberton, O., Gazim, Z. C., Laverde, A., Jr., Caetano, J., Amorin, A. C., & Dragunski, D. C. (2015). Phytoaccumulation and effect of lead on yield and chemical composition of Mentha crispa essential oil. Desalination and Water Treatment, 53(11), 3007–3017. https://doi.org/10.1080/19443994.2013.874716.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S. J., Ryan, P. R., Delhaize, E., & Matsumoto, H. (2004). A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal, 37, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., & Bleeker, P. M. (2002). The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. Journal of Experimental Botany, 53, 2381–2392.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, M., & Marquard, R. (1996). Investigation on the uptake of cadmium in Hypericum perforatum L. (St. John’s wort). Acta Horticulturae, (426), 435–442.

    Google Scholar 

  • Sharma, S., & Adholeya, A. (2011). Phytoremediation of Cr-contaminated soil using Aloe vera and Chrysopogon zizanioides along with AM fungi and filamentous saprobe fungi: A research study towards possible practical application. Mycorrhiza News, 22(4), 16–20.

    Google Scholar 

  • Siddiqui, F., Krishna, S. K., Tandon, P. K., & Srivastava, S. (2013). Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiologiae Plantarum, 35(4), 1071–1079.

    Article  CAS  Google Scholar 

  • Sinha, S., Mishra, R. K., Sinam, G., Mallick, S., & Gupta, A. K. (2013). Comparative evaluation of metal phytoremediation potential of trees, grasses, and flowering plants from tannery-wastewater-contaminated soil in relation with physicochemical properties. Soil and Sediment Contamination, 22(8), 958–983. https://doi.org/10.1080/15320383.2013.770437.

    Article  Google Scholar 

  • Sobh, M., Moussawi, M. A., Rammal, W., Hijazi, A., Rammal, H., Reda, M., & Hamieh, T. (2014). Removal of lead (II) ions from waste water by using Lebanese Cymbopogon citratus (lemon grass) stem as adsorbent. American Journal of Phytomedicine and Clinical Therapeutics, 2(9), 1070–1080.

    CAS  Google Scholar 

  • Souza, L. A., Piotto, F. A., Nogueirol, R. C., & Azevedo, R. A. (2013). Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents: Review. Scientia Agricola, 70(4), 290–295.

    Article  CAS  Google Scholar 

  • Stancheva, I., Geneva, M., Boychinova, M., Mitova, I., & Markovska, Y. (2014). Physiological response of foliar fertilized Matricaria recutita L. grown on industrially polluted soil. Journal of Plant Nutrition, 37(12), 1952–1964.

    Article  CAS  Google Scholar 

  • Tirillini, B., Ricci, A., Pintore, G., Chessa, M., & Sighinolfi, S. (2006). Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia, 77, 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Van Minh, V., & Van Khanh, N. (2016). Potential of using vetiver grass to remediate soil contaminated with heavy metals. VNU Journal of Science: Earth and Environmental Sciences, 27(3):146–150.

    Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. The New Phytologist, 181, 759–776.

    Article  CAS  PubMed  Google Scholar 

  • Voyslavov, T., Georgieva, S., Arpadjan, S., & Tsekova, K. (2013). Phytoavailability assessment of cadmium and lead in polluted soils and accumulation by Matricaria chamomilla (Chamomile). Biotechnology and Biotechnological Equipment, 27(4), 3939–3943.

    Article  CAS  Google Scholar 

  • Wall, M. A., & Boyd, R. S. (2006). Melanotrichus boydi (Hemiptera: Miridae) is a specialist on the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). The Southwestern Naturalist, 31, 481–489.

    Article  Google Scholar 

  • Watanabe, T., & Osaki, M. (2002). Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: A review. Communications in Soil Science and Plant Analysis, 33, 1247–1260.

    Article  CAS  Google Scholar 

  • Zahedifara, M., Moosavib, A. A., Shafigh, M., Zareib, Z., & Karimian, F. (2016). Cadmium accumulation and partitioning in Ocimum basilicum as influenced by the application of various potassium fertilizers. Archives of Agronomy and Soil Science, 62(5), 663–673.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2002). Arsenic hyperaccumulation by different fern species. The New Phytologist, 156, 27–31.

    Article  CAS  Google Scholar 

  • Zhao, F. J., & McGrath, S. P. (2009). Biofortification and phytoremediation. Current Opinion in Plant Biology, 12, 373–380.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the technical and financial support by the University Centre for Research and Development (UCRD), Chandigarh University, Mohali, Punjab, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanveer Bilal Pirzadah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, F.A., Pirzadah, T.B., Malik, B. (2020). Accumulation of Heavy Metals in Medicinal and Aromatic Plants. In: Aftab, T., Hakeem, K.R. (eds) Plant Micronutrients. Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_6

Download citation

Publish with us

Policies and ethics