Skip to main content

Theory of Stochasticity and Chaos of Electrons in Relativistic Lasers

  • Chapter
  • First Online:
The Physics of Laser Plasmas and Applications - Volume 1

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

Abstract

In order to understand the physics of the interaction of relativistic laser and electrons, PIC simulation and its post-process analysis are not enough. Some theoretical models based on approximate equations easy to solve are required for really knowing the core of the physical phenomena and controlling them. In the case of small perturbation, Vlasov-Fokker-Planck equations are derived, where the stochasticity is expressed as the diffusion in energy space. For large perturbation, the fractional Fokker-Planck equation is proposed from the idea of Tsallis statistics. The time evolution and intensity dependence of the electron distribution functions are compared to the PIC and experimental data. The perturbation theory of the Hamilton equation is also developed to explain the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Meyer-ter-Vehn, Z.M. Sheng, Phys. Plasmas 6, 641 (1999)

    Article  ADS  Google Scholar 

  2. S.C. Wilks, W.L. Kruer, IEEE J. Quant. Elec 33, 1953 (1997)

    Article  ADS  Google Scholar 

  3. T. Nakamura et al., Phys. Plasmas 9, 1801 (2002)

    Article  ADS  Google Scholar 

  4. M. Tanimoto et al., Phys. Rev. E 68, 026401 (2003)

    Article  ADS  Google Scholar 

  5. Z.M. Sheng et al., Phys. Rev. Lett. 88, 055004 (2002)

    Article  ADS  Google Scholar 

  6. S. Rassou, A. Bourdier, M. Drouin, Phys. Plasma 21, 083101 (2014)

    Article  ADS  Google Scholar 

  7. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  8. J. Klafter, M. F. Sclesinger, and G. Zumofen, Physics Today, Feb. p.33 (1996)

    Google Scholar 

  9. B. Mandelbrot, The Fractal Geometry of Nature, (Freeman, 1982)

    Google Scholar 

  10. A.V. Milovanov, J.J. Rasmussen, Phys. Lett. A 378, 1492 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. S.V. Bulanov et al., Aust. J. Plant Physiol. 83, 905830202 (2017)

    Google Scholar 

  12. E. Barkai, R. Metzler, J. Klafter, Phys. Rev. E 61, 132 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Anderson et al., Phys. Plasmas 21, 122109 (2014)

    Article  ADS  Google Scholar 

  14. C. Tsallis et al., Phys. Rev. Lett. 75, 3589 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Bourdier, M. Drouin, Laser Part. Beams 27, 545 (2009)

    Article  ADS  Google Scholar 

  16. Y. Kuramitsu et al., Phys. Plasmas 18, 010701 (2011)

    Article  ADS  Google Scholar 

  17. S. Kojima et al., Commun. Phys. 2, 99 (2019)

    Article  Google Scholar 

  18. E. Fermi, Phys. Rev. 75, 1169 (1949); Astrophys. J. 119, 1. (1954)

    Google Scholar 

  19. A. R. Bell, Mon. Not. R. Astro. Soc. 182, 147 (1978); K. M. Schure et al., Space Sci. Rev. 173, 491 (2012)

    Google Scholar 

  20. P. Chen et al., Phys. Rev. Lett. 89, 161101 (2002)

    Article  ADS  Google Scholar 

  21. M. Hoshino, Astrophys. J. 672, 940 (2008)

    Article  ADS  Google Scholar 

  22. M. Iwamoto et al., Astrophys. J. 840, 52 (2017)

    Article  ADS  Google Scholar 

  23. L. Sironi, A.Y. Spitkovsy, J. Arons, Astrophys. J. 771, 54 (2013)

    Article  ADS  Google Scholar 

  24. S. Moradi et al., Physical Rev. Research 2, 013027 (2020)

    Article  ADS  Google Scholar 

  25. S. Bulanov et al., Phys. Plasmas 22, 063108 (2015)

    Article  ADS  Google Scholar 

  26. U. Tilnakli, E.P. Borges, Sci. Rep. 6, 23644 (2016)

    Article  ADS  Google Scholar 

  27. A.J. Lichtenberg, M.A. Liberman, Regular and Stochastic Motion (Springer, 1983). Chapter 3

    Google Scholar 

  28. T. Mendoca, Phys. Rev. A, 3592 (1983)

    Google Scholar 

  29. J.M. Rax, Phys. Fluids B-4, 3962 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takabe, H. (2020). Theory of Stochasticity and Chaos of Electrons in Relativistic Lasers. In: The Physics of Laser Plasmas and Applications - Volume 1. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-49613-5_9

Download citation

Publish with us

Policies and ethics