Skip to main content

Relativistic Laser Plasma Interactions

  • Chapter
  • First Online:
The Physics of Laser Plasmas and Applications - Volume 1

Part of the book series: Springer Series in Plasma Science and Technology ((SSPST))

Abstract

When a relativistic laser is impinged to low-density plasma, the electrons start moving to the laser propagation direction and induce charge separation from heavy ions. It becomes to consider the role of the generated electrostatic field. Also the mass correction by relativity modifies the electron oscillation un-harmonic, and consequently higher harmonic generation is observed. Not only higher frequency but also lower frequency photon cascade appears. Ponderomotive force is derived for relativistic case. Without electron density modification, the nonlinearity of mass induces relativistic filamentation. It is shown that the SRS is enhanced in relativistic laser plasma. The vxB force is effective to generate the electron current jets into the solid density with 2ω period. So-called ponderomotive scaling is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.B. Mori, C.D. Decker, W.P. Leemans, IEEE Trans. Plasma Sci 21, 110 (1993)

    Article  ADS  Google Scholar 

  2. C.D. Decker et al., Phys. Plasmas 3, 2047 (1996)

    Article  ADS  Google Scholar 

  3. K. Mima et al., Phys. Plasmas 8, 2349 (2001)

    Article  ADS  Google Scholar 

  4. R. Lichters, J. Meyer-ter-Vehn, A. Pukov, Phys. Plasmas 3, 3425 (1996)

    Article  ADS  Google Scholar 

  5. W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985)

    Article  ADS  Google Scholar 

  6. Z.Y. Ge et al., Phys. Rev. E 89, 033106 (2014)

    Article  ADS  Google Scholar 

  7. L.G. Huang, T. Kluge, T.E. Cowan, Phys. Plasmas 23, 063112 (2016)

    Article  ADS  Google Scholar 

  8. S.V. Bulanov, N.M. Naumova, F. Pergoraro, Phys. Plasmas 1, 745 (1994)

    Article  ADS  Google Scholar 

  9. S. Gordienko et al., Phys. Rev. Lett. 93, 115002 (2004)

    Article  ADS  Google Scholar 

  10. T. Baeva, S. Gordienko, A. Pukov, Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  11. B. Dromey et al., Phys. Rev. Lett. 99, 085001 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takabe, H. (2020). Relativistic Laser Plasma Interactions. In: The Physics of Laser Plasmas and Applications - Volume 1. Springer Series in Plasma Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-49613-5_6

Download citation

Publish with us

Policies and ethics