Skip to main content

Limit Analysis of Dry Masonry Block Structures with Non-associative Coulomb Friction: A Novel Computational Approach

  • Chapter
  • First Online:
Direct Methods

Abstract

The limit analysis of dry-masonry block structures with non-associative Coulomb friction is formulated as a Mixed Complementarity Problem. After highlighting some of its peculiar features, such as the lack of uniqueness of the collapse multiplier, a fixed-point based algorithm is presented for constructing a solution, obtained by iteratively solving straightforward associative limit analysis problems. Supported by the comparison with benchmark problems, the resulting procedure is proven to be able to predict the collapse multiplier of masonry block structures with accuracy, robustness and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addessi, D., Sacco, E.: A multi-scale enriched model for the analysis of masonry panels. Int. J. Solids Struct. 49(6), 865–880 (2012). https://doi.org/10.1016/j.ijsolstr.2011.12.004

  2. Alexakis, H., Makris, N.: Hinging mechanisms of masonry single-nave barrel vaults subjected to lateral and gravity loads. J. Struct. Eng. 143(6), 04017,026 (2017). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001762

  3. Baggio, C., Trovalusci, P.: Limit analysis for no-tension and frictional three-dimensional discrete systems. Mech. Based Des. Struct. 26(3), 287–304 (1998). https://doi.org/10.1080/08905459708945496

  4. Baggio, C., Trovalusci, P.: Collapse behaviour of three-dimensional brick-block systems using non-linear programming. Struct. Eng. Mech. 10(2), 181–195 (2000). https://doi.org/10.12989/sem.2000.10.2.181

  5. Baraldi, D., Cecchi, A.: Discrete model for the collapse behavior of unreinforced random masonry walls. In: Di Tommaso, A., Gentilini, C., Castellazzi, G. (eds.) Mechanics of Masonry Structures Strengthened with Composite Materials II (MuRiCo5), Key Eng. Mater., vol. 747, pp. 3–10. Trans Tech Publications, Ltd., (2017). https://doi.org/10.4028/www.scientific.net/KEM.747.3

  6. Braides, A., Nodargi, N.A.: Homogenization of cohesive fracture in masonry structures. Math. Mech. Solids. 25(2), 181–200(2020). https://doi.org/10.1177/1081286519870222

  7. Brasile, S., Casciaro, R., Formica, G.: Finite element formulation for nonlinear analysis of masonry walls. Comput. Struct. 88(3–4), 135–143 (2010). https://doi.org/10.1016/j.compstruc.2009.08.006

  8. Cervera, M., Chiumenti, M., Codina, R.: Mixed stabilized finite element methods in nonlinear solid mechanics Part II: Strain localization. Comput. Meth. Appl. Mech. Eng. 199(37–40), 2571–2589 (2010). https://doi.org/10.1016/j.cma.2010.04.005

  9. Dirkse, S.P., Ferris, M.C.: The path solver: a nommonotone stabilization scheme for mixed complementarity problems. Optim. Method Softw. 5(2), 123–156 (1995). https://doi.org/10.1080/10556789508805606

  10. Drucker, D.C.: Coulomb friction, plasticity, and limit loads. J. Appl. Mech. Trans. ASME 21, 71–74 (1954)

    Google Scholar 

  11. Ferris, M.C., Tin-Loi, F.: Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Int. J. Mech. Sci. 43(1), 209–224 (2001). https://doi.org/10.1016/S0020-7403(99)00111-3

  12. Fishwick, R.J.: Limit analysis of rigid block structures. Ph.D. thesis, Department of Civil Engineering, University of Portsmouth (1996)

    Google Scholar 

  13. Gambarotta, L., Lagomarsino, S.: Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its applications. Earthquake Eng. Struct. Dyn. 26(4), 423–439 (1997). https://doi.org/10.1002/(SICI)1096-9845(199704)26

  14. Gatta, C., Addessi, D., Vestroni, F.: Static and dynamic nonlinear response of masonry walls. Int. J. Solids Struct. 155, 291–303 (2018). https://doi.org/10.1016/j.ijsolstr.2018.07.028

  15. Gilbert, M., Casapulla, C., Ahmed, H.M.: Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Comput. Struct. 84(13–14), 873–887 (2006). https://doi.org/10.1016/j.compstruc.2006.02.005

  16. Heyman, J.: The stone skeleton. Int. J. Solids Struct. 2(2), 249–279 (1966). https://doi.org/10.1016/0020-7683(66)90018-7

  17. Intrigila, C., Nodargi, N.A., Bisegna, P.: Square cross vaults on spreading supports. In: Aguilar, R., Torrealva, D., Moreira, S., Pando, M., Ramos, L.F. (eds.) Structural Analysis of Historical Constructions, RILEM Bookseries, vol 18, pp. 1045–1053. Springer (2019). https://doi.org/10.1007/978-3-319-99441-3_113

  18. Kooharian, A.: Limit analysis of voussoir (segmental) and concrete archs. Proc. Am. Concrete Inst. 89, 317–328 (1952)

    Google Scholar 

  19. Livesley, R.K.: Limit analysis of structures formed from rigid blocks. Int. J. Numer. Methods Eng. 12(12), 1853–1871 (1978). https://doi.org/10.1002/nme.1620121207

  20. Lo Bianco, M., Mazzarella, C.: Sulla sicurezza sismica delle strutture in muratura a blocchi. In: Proceedings of Stato dell’arte in Italia sulla meccanica delle murature, pp. 577–596 (1985)

    Google Scholar 

  21. Milani, G.: Simple homogenization model for the non-linear analysis of in-plane loaded masonry walls. Comput. Struct. 89(17–18), 1586–1601 (2011). https://doi.org/10.1016/j.compstruc.2011.05.004

  22. Morini, B., Porcelli, M., Toint, P.L.: Approximate norm descent methods for constrained nonlinear systems. Math. Comput. 87, 1327–1351 (2018). https://doi.org/10.1090/mcom/3251

  23. Nodargi, N.A.: An overview of mixed finite elements for the analysis of inelastic bidimensional structures. Arch. Comput. Method Eng. 26(4), 1117–1151 (2019). https://doi.org/10.1007/s11831-018-9293-0

  24. Nodargi, N.A., Bisegna, P.: State update algorithm for isotropic elastoplasticity by incremental energy minimization. Int. J. Numer. Methods Eng. 105(3), 163–196 (2015). https://doi.org/10.1002/nme.4966

  25. Nodargi, N.A., Bisegna, P.: A novel high-performance mixed membrane finite element for the analysis of inelastic structures. Comput. Struct. 182, 337–353 (2017). https://doi.org/10.1016/j.compstruc.2016.10.002

  26. Nodargi, N.A., Bisegna, P.: A mixed finite element for the nonlinear analysis of in-plane loaded masonry walls. Int. J. Numer. Methods Eng. 120(11), 1227–1248 (2019). https://doi.org/10.1002/nme.6179

  27. Nodargi, N.A., Artioli, E., Caselli, F., Bisegna, P.: State update algorithm for associative elastic-plastic pressure-insensitive materials by incremental energy minimization. Fract. Struct. Integrity 29, 111–127 (2014). https://doi.org/10.3221/IGF-ESIS.29.11

  28. Nodargi, N.A., Caselli, F., Artioli, E., Bisegna, P.: A mixed tetrahedral element with nodal rotations for large-displacement analysis of inelastic structures. Int. J. Numer. Methods Eng. 108(7), 722–749 (2016). https://doi.org/10.1002/nme.5232

  29. Nodargi, N.A., Intrigila, C., Bisegna, P.: A variational-based fixed-point algorithm for the limit analysis of dry-masonry block structures with non-associative coulomb friction. Int. J. Mech. Sci. 161–162(105), 078 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105078

  30. Oliveira, D.V., Lourenço, P.B.: Implementation and validation of a constitutive model for the cyclic behaviour of interface elements. Comput. Struct. 82(17–19), 1451–1461 (2004). https://doi.org/10.1016/j.compstruc.2004.03.041

  31. Orduña, A., Lourenço, P.B.: Three-dimensional limit analysis of rigid blocks assemblages. Part I: Torsion failure on frictional interfaces and limit analysis formulation. Int. J. Solids Struct. 42(18–19), 5140–5160 (2005). https://doi.org/10.1016/j.ijsolstr.2005.02.010

  32. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Mathematical Optimization. Prentice Hall, Mineola, New York (1998)

    MATH  Google Scholar 

  33. Pelà, L., Cervera, M., Roca, P.: Continuum damage model for orthotropic materials: application to masonry. Comput. Meth. Appl. Mech. Eng. 200(9–12), 917–930 (2011). https://doi.org/10.1016/j.cma.2010.11.010

  34. Pelà, L., Cervera, M., Roca, P.: An orthotropic damage model for the analysis of masonry structures. Constr. Build Mater. 41, 957–967 (2013). https://doi.org/10.1016/j.conbuildmat.2012.07.014

  35. Petracca, M., Pelà, L., Rossi, R., Oller, S., Camata, G., Spacone, E.: Regularization of first order computational homogenization for multiscale analysis of masonry structures. Comput. Mech. 57(2), 257–276 (2016). https://doi.org/10.1007/s00466-015-1230-6

  36. Portioli, F., Cascini, L.: Large displacement analysis of dry-jointed masonry structures subjected to settlements using rigid block modelling. Eng. Struct. 148, 485–496 (2017). https://doi.org/10.1016/j.engstruct.2017.06.073

  37. Radenkovic, D.: Théorèmes limites pour un materiau de Coulomb à dilatiation non standardisée. C R Acad. Sci. Paris 252, 4103–4104 (1961)

    MathSciNet  MATH  Google Scholar 

  38. Trentadue, F., Quaranta, G.: Limit analysis of frictional block assemblies by means of fictitious associative-type contact interface laws. Int. J. Mech. Sci. 70, 140–145 (2013). https://doi.org/10.1016/j.ijmecsci.2013.02.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Nodargi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nodargi, N.A., Intrigila, C., Bisegna, P. (2021). Limit Analysis of Dry Masonry Block Structures with Non-associative Coulomb Friction: A Novel Computational Approach. In: Pisano, A., Spiliopoulos, K., Weichert, D. (eds) Direct Methods. Lecture Notes in Applied and Computational Mechanics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-48834-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48834-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48833-8

  • Online ISBN: 978-3-030-48834-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics