Skip to main content

Anesthesia

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies
  • 486 Accesses

Abstract

Epilepsy surgery poses several considerable challenges to the anesthesiologist: (1) anticonvulsant therapy can adversely affect various organ systems, (2) effective intraoperative electrocorticography (ECoG) and electrophysiological mapping and monitoring require appropriate choice of anesthetics, and (3) extensive procedures like multilobectomy or hemispherectomy can be associated with homeostatic derangements, especially when performed during very early childhood. With availability of sophisticated tools for language mapping as well as for mapping and monitoring of sensorimotor functions, all surgical procedures for epilepsy can in principle be performed under general anesthesia. Overall, general anesthesia for epilepsy is similar to that for any craniotomy. However, intraoperative electrophysiological testing and electrocorticography require modifications. During the past decades, awake craniotomy has been reintroduced and has become an accepted technique for various neurosurgical interventions. Considerable progress in anesthetic techniques has facilitated this renaissance. Awake craniotomy can be managed under local anesthesia combined with moderate sedation or by modifications combining general and local anesthesia (asleep-awake-asleep and asleep-awake technique). Special expertise is required to assure patient comfort and successful outcome. Provision of safe and effective local anesthesia and sedation, and of smooth and predictably rapid transition from unconsciousness to a cooperative state, remains a major anesthetic challenge. As the procedural demands are considerable, performance of awake craniotomy should be restricted to centers with sufficient experience.

Life is pain and the enjoyment of love is an anesthetic

Cesare Pavese

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shetti A, Pardeshi S, Shah VM, Kulkarni A. Anesthesia considerations in epilepsy surgery. Int J Surg. 2015;36:454–9. https://doi.org/10.1016/j.ijsu.2015.07.006.

    Article  Google Scholar 

  2. Koh JL, Egan B. Pediatric epilepsy surgery. Anaesthetic considerations. Anesthesiol Clin. 2012;30:191–206.

    Article  PubMed  Google Scholar 

  3. Girvin JP. Surgery under local anesthesia. In: Girvin JP, editor. Operative techniques in epilepsy. New York: Springer; 2015. p. 37–72.

    Google Scholar 

  4. Olivier A. Techniques in Epilepsy Surgery. The MNI Approach. Cambridge Medicine, 2012.

    Google Scholar 

  5. Manohar C, Avitsian R, Lozano S, et al. The effect of antiepileptic drugs on coagulation and bleeding in the perioperative period of epilepsy surgery: The Cleveland Clinic experience. J Clin Neurosci. 2011;18:1180–4.

    Article  CAS  PubMed  Google Scholar 

  6. Verrotti A, Greco R, Matera V, et al. Platelet count and function in children with epilepsy receiving valproic acid. Pediatr Neurol. 1999;21:611–4.

    Article  CAS  PubMed  Google Scholar 

  7. Modica PA, Tempelhoff R, White PF. Pro- and anticonvulsant effects of anesthetics (part II). Anesth Analg. 1990;70:433–44.

    Article  CAS  PubMed  Google Scholar 

  8. Schubert A, Lotto M. Awake craniotomy, epilepsy, minimally invasive and robotic surgery. In: Cottrell JE, Young WL, editors. Cottrell and young’s neuroanesthesia. 5th ed. Mosby: Elsevier; 2010. p. 296–316.

    Chapter  Google Scholar 

  9. Smith M, Smith SJ, Scott CA, Harkness WF. Activation of the electrocorticogram by propofol during surgery for epilepsy. Br J Anesthiol. 1992;76:652–4.

    Article  Google Scholar 

  10. Grønlykke L, Knudsen ML, Høgenhaven H, Moltke FB, Madsen FF, Kjaer TW. Remifentanil-induced spike activity as a diagnostic tool in epilepsy surgery. Acta Neurol Scand. 2008;117:90–3.

    PubMed  Google Scholar 

  11. Mirsattari M, Sharpe MD, Young GB. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane. Arch Neurol. 2004;61:1254–9.

    Article  PubMed  Google Scholar 

  12. Perks A, Cheema S, Mohanraj R. Anaesthesia and epilepsy. Br J Anaesth. 2012;108:562–71.

    Article  CAS  PubMed  Google Scholar 

  13. Artru AA, Lettich E, Colley PS, Ojemann GA. Nitrous oxide: suppression of focal epileptiform activity during inhalation, and spreading of seizure activity following withdrawal. J Neurosurg Anesthesiol. 1990;2:189–93.

    Article  CAS  PubMed  Google Scholar 

  14. Bindra A, Chouhan RS, Prabhakar H, Dash HH, Chandra PS, Tripathi M. Comparison of the effects of different anesthetic techniques on electrocorticography in patients undergoing epilepsy surgery—a bispectral index guided study. Seizure. 2012;21:501–7.

    Article  PubMed  Google Scholar 

  15. Bindra A, Chouhan RS, Prabhakar H, Chandra PS, Tripathi M. Perioperative anesthetic implications of epilepsy surgery: a retrospective analysis. J Anesth. 2015;29:229–34.

    Article  PubMed  Google Scholar 

  16. Basheer SN, Connolly MB, Lautzenhiser A, et al. Hemispheric surgery in children with refractory epilepsy: seizure outcome, complications, and adaptive function. Epilepsia. 2007;48:133–40.

    Article  PubMed  Google Scholar 

  17. Thudiuam MO, von Lehe M, Weeesling C, et al. Safety, feasibility and complications during resective pediatric epilepsy surgery: a retrospective analysis. BMC Anesthesiol. 2014;14:71–5.

    Article  CAS  Google Scholar 

  18. Horsley V. Brain-surgery. Br Med J. 1886;2:670–5.

    Article  Google Scholar 

  19. Krause F. Die operative Behandlung der Epilepsie. Med Klin Berlin. 1909;5:1418–22.

    Google Scholar 

  20. Cushing H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain. 1909;32:44–53.

    Article  Google Scholar 

  21. Foerster O, Penfield W. The structural basis of traumatic epilepsy and results of radical operation. Brain. 1930;53:99–120.

    Article  Google Scholar 

  22. Penfield W, Steelman H. The treatment of focal epilepsy by cortical excision. Ann Surg. 1947;126:740–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston, MA: Little, Brown and Co.; 1954. p. 896.

    Google Scholar 

  24. Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–70.

    Article  CAS  PubMed  Google Scholar 

  25. Neuloh G. Schramm J. Intraoperative neurophysiological mapping and monitoring for supratentorial procedures. In: Deletis V, JL S, editors. Neurophysiology in neurosurgery: a modern intraoperative approach. Amsterdam/Boston, MA: Academic Press; 2002. p. 339–401.

    Chapter  Google Scholar 

  26. Pechstein U, Nadstawek J, Zentner J, Schramm J. Isoflurane plus nitrous oxide versus propofol for recording of myogenic motor evoked potentials after high frequency repetitive electric stimulation. EEG Clin Neurphysiol. 1998;108:175–81.

    CAS  Google Scholar 

  27. Scheufler KM, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96:571–9.

    Article  CAS  PubMed  Google Scholar 

  28. Thees C, Scheufler KM, Nadstawek J, Pechstein U, Hanisch M, Juntke R, Zentner J, Hoeft A. Influence of fentanyl, alfentanil, and sufentanil on motor evoked potentials. J Neurosurg Anesthesiol. 1999;11:112–8.

    Article  CAS  PubMed  Google Scholar 

  29. Manninen PH, See JJ. Epilepsy, epilepsy surgery, awake craniotomy for tumor surgery, and intraoperative magnetic resonance imaging. In: Newfield P, Cottrell JE, editors. Handbook of neuroanesthesia. 4th ed. Philadelphia, PA: Lippincott William and Wilkins; 2007. p. 198–215.

    Google Scholar 

  30. Herrick IA, Gelb AW. Anesthesia for temporal lobe epilepsy. Can J Neurol Sci. 2000;27(Suppl 1):64–7.

    Article  Google Scholar 

  31. Gignac E, Manninen P, Gelb AW. Comparison of fentanyl, sufentanil and alfentanil during awake craniotomy for epilepsy. Can J Anaesth. 1993;40:421–4.

    Article  CAS  PubMed  Google Scholar 

  32. Hans P, Bonhomme V, Born JD, Maertens de Noordhoudt A, Brichant JF, Dewandre PY. Target-controlled infusion of propofol and remifentanil combined with bispectral index monitoring for awake craniotomy. Anesthesia. 2000;55:255–9.

    Article  CAS  Google Scholar 

  33. Potters JW, Klimek M. Awake craniotomy: improving the patient’s experience. Curr Opin Anaesthesiol. 2015;28:511–6.

    Article  PubMed  Google Scholar 

  34. Erickson KM, Cole DJ. Anesthetic considerations for awake craniotomy for epilepsy and functional neurosurgery. Anesthesiol Clin. 2012;30:241–68.

    Article  PubMed  Google Scholar 

  35. Everett LL, van Rooyen IF, Warner MH, Shurtleff HA, Saneto RP, Ojemann JG. Use of dexmedetomidine in awake craniotomy in adolescents: report of two cases. Paediatr Anaesth. 2006;16:338–42.

    Article  PubMed  Google Scholar 

  36. Berger MS. The impact of technical adjuncts in the surgical management of cerebral hemispheric low-grade gliomas of childhood 1996. J Neurooncol. 1996;28:129–55.

    Article  CAS  PubMed  Google Scholar 

  37. Klimek M, Verbrugge SJ, Roubos S, van der Most E, Vincent AJ, Klein J. Awake craniotomy for glioblastoma in a 9-year-old child. Anaesthesia. 2004;59:607–9.

    Article  CAS  PubMed  Google Scholar 

  38. Lohkamp L-N, Mottolese C, Szathmari A, et al. Awake brain surgery in children—review of the literature and state-of-the-art. Childs Nerv Syst. 2019;35(11):2071–7. https://doi.org/10.1007/s00381-019-04279-w.

    Article  PubMed  Google Scholar 

  39. Beez T, Boge K, Wager M, Whittle I, Fontaine D, Spena G, Braun S, Szelenyi A, Bello L, Duffau H, Sabel M. Tolerance of awake surgery for glioma: a prospective European low grade glioma network multicenter study. Acta Neurochir. 2013;155:1301–8.

    Article  PubMed  Google Scholar 

  40. Milian M, Tatagiba M, Feigl GC. Patient response to awake craniotomy—a summary overview. Acta Neurochir. 2014;156:1063–70.

    Article  PubMed  Google Scholar 

  41. Piccioni F, Fanzio M. Management of anesthesia in awake craniotomy. Minerva Anesthesiol. 2008;74:393–408.

    CAS  Google Scholar 

  42. Lobo FA, Wagemakers M, Absalom AR. Anaesthesia for awake craniotomy. Br J Anaesthiol. 2016;116:740–4.

    Article  CAS  Google Scholar 

  43. Jones TS, Black IH, Robinson TN, Jones EL. Operating room fires. Anesthesiology. 2019;130:492–501.

    Article  PubMed  Google Scholar 

  44. Herrick IA, Craen RA, Gelb AW, McLachlan RS, Girvin JP, Parrent AG, et al. Propofol sedation during awake craniotomy for seizures: electrocorticographic and epileptogenic effects. Anesth Analg. 1997a;84:1280–4.

    Article  CAS  PubMed  Google Scholar 

  45. Herrick IA, Craen RA, Gelb AW, Miller LA, Kubu CS, et al. Propofol sedation during awake craniotomy for seizures: Patient-controlled administration versus neurolept analgesia. Anesth Analg. 1997b;84:1285–91.

    Article  CAS  PubMed  Google Scholar 

  46. Potters JW, Klimek M. Local anesthetics for brain tumor resection: current perspectives. Local Reg Anesthiol. 2018;11:1–8.

    Article  Google Scholar 

  47. Costello TG, Cormack JR. Anesthesia for awake craniotomy: A modern approach. J Clin Neurosci. 2004;11:16–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kulikov A, Lubnin A. Anesthesia for awake craniotomy. Curr Opin Anaesthesiol. 2018;31:506–10.

    Article  PubMed  Google Scholar 

  49. Meng L, McDonagh DL, Berger MS, Gelb AW. Anesthesia for awake craniotomy: a how-to-guide for the occasional practitioner. Can J Anaesth. 2017;64:517–29.

    Article  PubMed  Google Scholar 

  50. Lin N, Vutskits L, Bebawy JF, Gelb AW. Perspectives on dexmedetomidine use for neurosurgical patients. J Neurosurg Anesthesiol. 2019;31(4):366–77. https://doi.org/10.1097/ANA.0000000000000554.

    Article  PubMed  Google Scholar 

  51. Huncke K, Van de Wiele B, Fried I, Rubinstein EH. The asleep-awake-asleep anesthetic technique for intraoperative language mapping. Neurosurgery. 1998;42:1312–6.

    Article  CAS  PubMed  Google Scholar 

  52. Olsen KS. The asleep-awake technique using propofol-remifentanil anesthesia for awake craniotomy for cerebral tumors. Eur J Anesthesiol. 2008;25:662–9.

    Article  CAS  Google Scholar 

  53. Wang X, Wang T, et al. Asleep-awake-asleep regimen for epilepsy surgery: a prospective study of target-controlled infusion versus manually controlled infusion technique. J Clin Anesth. 2016;32:92–100.

    Article  PubMed  Google Scholar 

  54. Ghadhinglajkar S, Sreedhar R, Abraham M. Anesthesia management of awake craniotomy performed under asleep-awake-asleep technique using laryngeal mask airway: Report of two cases. Neurol India. 2008;56:65–7.

    Article  Google Scholar 

  55. Sewell D, Smith M. Awake craniotomy. Anesthetic considerations based on outcome evidence. Curr Opin Anesthesiol. 2019;32:546–52.

    Article  Google Scholar 

  56. Skucas AP, Artru AA. Anesthetic complications of awake craniotomies for epilepsy surgery. Anesth Analg. 2006;102:882–7.

    Article  PubMed  Google Scholar 

  57. Goldstein HE, Smith EH, Gross RE, et al. Risk of seizures induced by intracranial research stimulation: analysis of 770 stimulation sessions. J Neural Eng. 2019;16(6):066039. https://doi.org/10.1088/1741-2552/ab4365.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Szelényi A, Joksimoviã B, Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol. 2007a;24:39–43.

    Article  PubMed  Google Scholar 

  59. Szelényi A, Joksimovic B, Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol. 2007b;24(1):39–43.

    Article  PubMed  Google Scholar 

  60. Nossek E, Matot I. Intraoperative seizures during awake craniotomy: incidence and consequences—analysis of 477 patients. Neurosurgery. 2013;73(1):135–40. https://doi.org/10.1227/01.neu.0000429847.91707.97.

    Article  PubMed  Google Scholar 

  61. Roca E, Pallud J, Guerrini F, et al. Stimulation-related intraoperative seizures during awake surgery: a review of available evidences. Neurosurg Rev. 2020;43(1):87–93. https://doi.org/10.1007/s10143-019-01214-0.

    Article  PubMed  Google Scholar 

  62. Sarang A, Dinsmore J. Anaesthesia for awake craniotomy—evolution of a technique that facilitates awake neurological testing. Br J Anaesth. 2003;90:161–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). Anesthesia. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_5

Download citation

Publish with us

Policies and ethics