Skip to main content

Surgical Tools and Techniques

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies
  • 499 Accesses

Abstract

Current neurosurgery is best characterized by the terms functionally oriented and functionally guided surgery. Microsurgical techniques facilitate neurosurgical interventions in most brain regions with calculable risks. The technique of subpial gyral emptying has proven to be useful in highly vascularized areas where traversing vascular structures must be left intact to avoid infarctions in distant territories. Fused structural and functional imaging data can be made available for the neurosurgeon by neuronavigation both for planning the approach and for setting boundaries of resection. It is advisable to address any critical target early during surgery prior to brain shift effects. Real-time guidance of surgery by intraoperative imaging may only be useful in selected cases, e.g., to delineate subtle lesions such as focal cortical dysplasias in extratemporal location. For presurgical mapping, noninvasive techniques such as fMRI are available. Stimulation mapping to define language areas can be performed extraoperatively requiring a second procedure for resection, or intraoperatively during awake surgery. Mapping of the central area as well as of the pyramidal tract is feasible in general anesthesia with electrophysiological techniques. Somatosensory and motor evoked potentials have proven to be useful tools for intraoperative monitoring of the central area as well as ascending and descending pathways, and both modalities provide complementary information. With all these tools available, it should be emphasized that functional anatomy remains the essential basis for all neurosurgical interventions.

The brain is the organ of destiny. It holds within its humming mechanism secrets that will determine the future of the human race.

Wilder Penfield

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhoton AL. The cerebrum. Neurosurgery. 2007;61(Suppl 1):37–119.

    Article  PubMed  Google Scholar 

  2. Yasargil MG. Microneurosurgery, Microsurgery anatomy of the basal cisterns and vessels of the brain, vol. I. Stuttgart, New York: Thieme; 1984.

    Google Scholar 

  3. Yasargil MG. Microneurosurgery. Stuttgart, New York: Thieme; 1994.

    Google Scholar 

  4. Seeger W. Atlas of topographical anatomy of the brain and surrounding structures. Wien: Springer; 1978.

    Google Scholar 

  5. Seeger W, Zentner J. Anatomical basis of cranial neurosurgery. Heidelberg: Springer; 2018.

    Book  Google Scholar 

  6. Mascott RM. Image guidance and epilepsy surgery. In: Baltuch GH, Villemure J-G, editors. Operative techniques in epilepsy surgery. New York: Thieme; 2009. p. 3–19.

    Google Scholar 

  7. Cervos-Navarro J, Ferszt R. Klinische Neuropathologie. Stuttgart, New York: Thieme; 1989.

    Google Scholar 

  8. Kiernan JA. Anatomy of the temporal lobe. Epilepsy Res Treatment. 2012; https://doi.org/10.1155/2012/176157.

  9. Seeger W. The microsurgical approaches to the target areas of the brain. Wien, New York: Springer; 1993.

    Book  Google Scholar 

  10. Seeger W. Microanatomical aspects for neurosurgeons and neuroradiologists. Wine, New York: Springer; 2000.

    Book  Google Scholar 

  11. Seeger W, Zentner J. Neuronavigation and neuroanatomy. Wien, New York: Springer; 2002.

    Book  Google Scholar 

  12. Urbach H, editor. MRI in epilepsy. Berlin, Heidelberg: Springer; 2013.

    Google Scholar 

  13. Wen HT, Rhoton AL, et al. Microsurgical anatomy of the temporal lobe: Part 2—Sylvian fissure region and its clinical application. Neurosurgery. 2009;65(ONS Suppl. 1):ons1–ons36.

    Google Scholar 

  14. Olivier A, Boling WW, Tanriverdi T. Techniques in epilepsy surgery. Cambridge: University Press; 2012a. p. 41–53.

    Book  Google Scholar 

  15. Olivier A, Boling WW, Tanriverdi T. Techniques in epilepsy surgery. The MNI approach. Cambridge, New York: Cambridge University Press; 2012b.

    Book  Google Scholar 

  16. Broca P. Description élémentaire des circonvolutions cérébrales de l’homme. In: Reinwald C, editor. Mémoires sur le Cerveau de l’Homme et des Primates. Paris; 1888.

    Google Scholar 

  17. Wakana S, Jiang H, Nagae-Poetscher LM. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87.

    Article  PubMed  Google Scholar 

  18. Bancaud J, Dell MB. Techniques and méthode de l’interfacing exploration fonctionnelle stéréotaxique des structures encephaliques chez l’homme (cortex, sous-cortex, noyaux gris centraux). Rev Neurol. 1959;101:213–27.

    CAS  PubMed  Google Scholar 

  19. Talairach J, Bancaud J, Szikla G, et al. Approche nouvelle de la neurochirurgie de l’epilepsie: méthodologie stéréotaxique et résultats thérapeutiques. Neurochirurgie. 1974;20 Suppl:1–240.

    Google Scholar 

  20. Motti ED, Marossero F. Head-holder interfacing computed tomography with Talairach stereotactic frame. J Neurosurg Sci. 1983;27(3):219–23.

    CAS  PubMed  Google Scholar 

  21. Olivier A, Bertrand G, Peters T. Stereotactic systems and procedures for depth electrode placement: technical aspects. Appl Neurophysiol. 1983;46(1–4):37–40.

    CAS  PubMed  Google Scholar 

  22. Peters TM, Olivier A. C.T. aided stereotaxy for depth electrode implantation and biopsy. Can J Neurol Sci. 1983;10(3):166–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kelly PJ, Sharbrough FW, Kall BA, et al. Magnetic resonance imaging-based computer-assisted stereotactic resection of the hippocampus and amygdala in patients with temporal lobe epilepsy. May Clin Proc. 1987;62(2):103–8.

    Article  CAS  Google Scholar 

  24. Kelly PJ. State of the art and future directions of minimally invasive stereotactic neurosurgery. Cancer Control. 1995;2(4):287–92.

    CAS  PubMed  Google Scholar 

  25. Kelly PJ. Computer-assisted stereotaxis: new approaches for the management of intracranial intra-axial tumors. Neurology. 1986;36(4):535–41.

    Article  CAS  PubMed  Google Scholar 

  26. Bucholz RD, McDurmont L. From discovery to design: image-guided surgery. Clin Neurosurg. 2003;50:13–25.

    PubMed  Google Scholar 

  27. Roberts DW, Strohbehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65(4):545–9.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe E, Watanabe T, Manaka S, et al. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27(6):543–7.

    Article  CAS  PubMed  Google Scholar 

  29. Mascott CR. Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery. 2005;57(4):295–301.

    PubMed  Google Scholar 

  30. Mascott CR, Jean-Christophe S, Bousquet P, et al. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery. 2006;59(1):146–56.

    Google Scholar 

  31. Olivier A, Alonso-Vanegas M, Comeau R, Peters TM. Image-guided surgery of epilepsy. Neurosurg Clin N Am. 1996;7:229–43.

    Article  CAS  PubMed  Google Scholar 

  32. Olivier A, Germano IM, Cukiert A, et al. Frameless stereotaxy for surgery of the epilepsies: perliminary experience. Technical note. J Neurosurg. 1994;81 (4):629–33.

    Google Scholar 

  33. Mascott CR, et al. Frameless stereotactic placement of depth electrodes for investigation of epilepsy. Meeting of the American Association of Neurological Surgeons, 1995.

    Google Scholar 

  34. Gumprecht HK, Widenka DC, Lumanta CB. BrainLab VectorVision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery. 1999;44(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  35. Hogan RE, Lowe VJ, Bucholz RD. Triple-technique (MR imaging, single-photon-emission CT, and CT) coregistration for image-guided surgical evaluation of patients with intractable epilepsy. AJNR Am J Neuroradiol. 1999;20(6):1054–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mascott CR. In vivo accuracy of image guidance performed using optical tracking and optimized registration. J Neurosurg. 2006;105(4):561–7.

    Article  PubMed  Google Scholar 

  37. Raabe A, Krishnan R, Wolff R, et al. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery. 2002;50:797–801.

    Article  PubMed  Google Scholar 

  38. Kato A, Yoshimine T, Hayakawa T, et al. A frameless, armless navigational system for computer-assisted neurosurgery. J Neurosurg. 1991;74:845–9.

    Article  CAS  PubMed  Google Scholar 

  39. Comeau RM, Sadikot AF, Fenster A, et al. Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys. 2000;27:787–800.

    Article  CAS  PubMed  Google Scholar 

  40. Miller D, Knake S, Bauer S, Krakow K, Pagenstecher A, Sure U, et al. Intraoperative ultrasound to define focal cortical dysplasia in epilepsy surgery. Epilepsia. 2008;49:156–8.

    Article  PubMed  Google Scholar 

  41. Nimsky C, Ganslandt O, Fahlbusch R. 1.5 T: intraoperative imaging beyond standard anatomic imaging. Neurosurg Clin N Am. 2005;16(1):185–200.

    Article  PubMed  Google Scholar 

  42. Wirtz CR, Tronnier VM, Bonsanto MM, et al. Image-guided neurosurgery with intraoperative MRI: update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg. 1997;68:39–43.

    Article  CAS  PubMed  Google Scholar 

  43. Mehta AD, Labar D, Dean A, et al. Frameless stereotactic placement of depth electrodes in epilepsy surgery. J Neurosurg. 2005;192(6):1040–5.

    Article  Google Scholar 

  44. Murphy MA, O’Brien TJ, Cook MJ. Insertion of depth electrodes with or without subdural grids using frameless stereotactic guidance systems—technique and outcome. Br J Neurosurg. 2002;16(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  45. Oertel J, Gaab MR, Runge U, et al. Neuronavigation and complication rate in epilepsy surgery. Neurosurg Rev. 2004;27:214–7.

    Article  PubMed  Google Scholar 

  46. Duffner F, Freudenstein D, Schiffbauer H, et al. Combining MEG and MRI with neuronavigation for treatment of an epileptiform spike focus in the precentral region: a technical case report. Surg Neurol. 2003;59(1):40–6.

    Article  PubMed  Google Scholar 

  47. Gaillard WD, Bhatia S, Bookheimer SY, et al. FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology. 1995;45(1):123–6.

    Article  CAS  PubMed  Google Scholar 

  48. Levesque MF, Zhang JX, Wilson CL, et al. Stereotactic investigation of limbic epilepsy using a multimodal image analysis system. Technical note. J Neurosurg. 1990;73(5):792–7.

    Article  CAS  PubMed  Google Scholar 

  49. Murphy MA, O’Brien TJ, Morris K, et al. Multimodality image-guided surgery for the treatment of medically refractory epilepsy. J Neurosurg. 2004;100(3):452–62.

    Article  PubMed  Google Scholar 

  50. Krsek P, Maton B, Jayakar P, et al. Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology. 2009;72:217–23.

    Article  CAS  PubMed  Google Scholar 

  51. Rowland NC, Englot DJ, Cage TA, et al. A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J Neurosurg. 2012;116:1035–41.

    Article  PubMed  Google Scholar 

  52. Tripathi M, Singh MS, Padma MV, et al. Surgical outcome of cortical dysplasias presenting with chronic intractable epilepsy: a 10-year experience. Neurol India. 2008;56:138–43.

    Article  PubMed  Google Scholar 

  53. Wagner J, Urbach H, Niehusmann P, et al. Focal cortical dysplasia type IIb: completeness of cortical, not subcortical, resection is necessary for seizure freedom. Epilepsia. 2011;52:1418–24.

    Article  PubMed  Google Scholar 

  54. Sommer B, Grummich P, Coras R, et al. Integration of functional neuronavigation and intraoperative MRI in surgery for drug-resistant extratemporal epilepsy close to eloquent brain areas. Neurosurg Focus. 2013;34:E4.

    Article  PubMed  Google Scholar 

  55. Wurm G, Ringler H, Knogler F, Schnizer M. Evaluation of neuronavigation in lesional and non-lesional epilepsy surgery. Comput Aided Surg. 2003;8:204–14.

    Article  PubMed  Google Scholar 

  56. Fahlbusch R, Golby A, Prada F, et al. Introduction: utility of intraoperative imaging. J Neurosurg. 2016; https://doi.org/10.3171/2016.1.FOCUS1610.

  57. Kurwale NS, Chandra SP, Chouksey P, et al. Impact of intraoperative MRI on outcomes in epilepsy surgery: preliminary experience of two years. Br J Neurosurg. 2015;29(3):380–5.

    Article  PubMed  Google Scholar 

  58. Sacino MF, Ho C-Y, Murnick J, et al. The role of intraoperative MRI in resective epilepsy surgery for peri-eloquent cortex cortical dysplasias and heterotopias in pediatric patients. Neurosurg Focus. 2016; 40(3):E16.

    Google Scholar 

  59. Buchfelder M, Ganslandt O, Fahlbusch R, Nimsky C. Intraoperative magnetic resonance imaging in epilepsy surgery. J Magn Reson Imaging. 2000;12(4):547–55.

    Article  CAS  PubMed  Google Scholar 

  60. Roessler K, Kasper BS, Heynold E, et al. Intraoperative MR imaging and neuronavigation during resection of FCD Type II in adult epilepsy surgery offers better seizure outcome. World Neurosurgery. 2017; https://doi.org/10.1016/j.wneu.2017.09.100.

  61. Sacino MF, Ho C-Y, Murnick J, et al. Intraoperative MRI-guided resection of focal cortical dysplasia in pediatric patients: technique and outcomes. J Neurosurg Pediatr. 2016;17:672–8.

    Article  PubMed  Google Scholar 

  62. Mattei L, Prada F, Legnani FG, Perin A, Olivi A, DiMeco F, et al. Neurosurgical tools to extend tumor resection in hemispheric low-grade gliomas: conventional and contrast enhanced ultrasonography. Childs Nerv Syst. 2016;32(10):1907–14.

    Article  PubMed  Google Scholar 

  63. Prada F, Del Bene M, Casali C, Saladino A, Legnani FG, Perin A, et al. Intraoperative navigated angiosonography for skull base tumor surgery. World Neurosurg. 2015;84(6):1699–707.

    Article  PubMed  Google Scholar 

  64. Prada F, Vitale V, Del Bene M, Boffano C, Sconfienza LM, Pinzi V, Contrast-enhanced MR, et al. Imaging versus contrast-enhanced US: a comparison in glioblastoma surgery by using intraoperative fusion imaging. Radiology. 2017;285:242–9.

    Article  PubMed  Google Scholar 

  65. Chan HW, Pressler R, Uff C, Gunny R, St Piers K, Cross H, et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative shear wave elastography. Epilepsia. 2014;55:30–3.

    Article  Google Scholar 

  66. Lee C, Lin C, Yu H, Hung S, Shih Y, Hsu SPC. Applications of intraoperative ultrasound in epilepsy surgery for focal cortical dysplasia. J Med Ultrasound. 2014;22:43–6.

    Article  Google Scholar 

  67. Miller D, Knake S, Menzler K, Krakow K, Rosenow F, Sure U. Intraoperative ultrasound in malformations of cortical development. Ultraschall Med. 2011;32(2):E69–74.

    Article  PubMed  Google Scholar 

  68. Tringali G, Bono B, Dones I, Cordella R, Didato G, Villani F, et al. Multimodal approach for radical excision of focal cortical dysplasia by combining advanced magnetic resonance imaging data to intraoperative ultrasound, electrocorticography, and cortical stimulation: a preliminary experience. World Neurosurg. 2018;113:e738–46.

    Article  PubMed  Google Scholar 

  69. Ng A, Swanevelder J. Resolution in ultrasound imaging. Contin Educ Anaesth Crit Care Pain. 2011;11:186–92.

    Article  Google Scholar 

  70. Prada F, Gennari AG, Del Bene M, et al. Intraoperative ultrasonography (ioUS) characteristics of focal cortical dysplasia (FCD) type II b. Eur J Epilepsy. 2019;69:80–6.

    Article  Google Scholar 

  71. Sidhu PS, Cantisani V, Dietrich CF, Gilja OH, Saftoiu A, Bartels E, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (short version). Ultraschall Med. 2018; https://doi.org/10.1055/s-0044-10125.

  72. Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter HP. Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery. 2001;48:1178–82.

    CAS  PubMed  Google Scholar 

  73. Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg. 1999;91:238–50.

    Article  CAS  PubMed  Google Scholar 

  74. Krings T, Schreckenberger M, Rohde V, Foltys H, Spetzger U, Sabri O, Reinges MH, Kemeny S, Meyer PT, Moller-Hartmann W, Korinth M, Gilsbach JM, Buell U, Thron A. Metabolic and electrophysiological validation of functional MRI. J Neurol Neurosurg Psychiatry. 2001;71:762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lehericy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, Auliac S, Clemenceau S, Sichez JP, Bitar A, Valery CA, Van Effenterre R, Faillot T, Srour A, Fohanno D, Philippon J, Le Bihan D, Marsault C. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: Comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg. 2000;92:589–98.

    Article  CAS  PubMed  Google Scholar 

  76. Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS. Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol. 2000;17:57–64.

    Article  CAS  PubMed  Google Scholar 

  77. Roux FE, Boulanouar K, Ibarrola D, Tremoulet M, Chollet F, Berry I. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry. 2000;69:453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roux FE, Boulanouar K, Ranjeva JP, Tremoulet M, Henry P, Manelfe C, Sabatier J, Berry I. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir. 1999;141:71–9.

    Article  CAS  PubMed  Google Scholar 

  79. Stapleton SR, Kiriakopoulos E, Mikulis D, Drake JM, Hoffman HJ, Humphreys R, Hwang P, Otsubo H, Holowka S, Logan W, Rutka JT. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26:68–82.

    Article  CAS  PubMed  Google Scholar 

  80. Vinas FC, Zamorano L, Mueller RA, Jiang Z, Chugani H, Fuerst D, Muzik O, Mangner TJ. Diaz FG: [15O]-water PET and intraoperative brain mapping: a comparison in the localization of eloquent cortex. Neurol Res. 1997;19:601–8.

    Article  CAS  PubMed  Google Scholar 

  81. Foerster O. Zur Pathogenese und chirurgischen Behandlung der Epilepsie. Zentralbl Chir. 1925;52:531–49.

    Google Scholar 

  82. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electric stimulation. Brain. 1937a;60:389–443.

    Article  Google Scholar 

  83. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937b;60:389–443.

    Article  Google Scholar 

  84. Berger MS, Kincaid J, Ojemann GA, Lettich E. Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery. 1989;25:786–92.

    Article  CAS  PubMed  Google Scholar 

  85. Berger MS. Minimalism through intraoperative functional mapping. Clin Neurosurg. 1996;43:324–37.

    CAS  PubMed  Google Scholar 

  86. Ebeling U, Huber P. Localization of central lesions by correlation of CT findings and neurological deficits. Acta Neurochir. 1992;119:17–22. 14

    Article  CAS  PubMed  Google Scholar 

  87. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.

    Article  CAS  PubMed  Google Scholar 

  88. Silbergeld DL. Cortical mapping. In: Lüders H, Comair YG, editors. Epilepsy surgery. Philadelphia: Lippincott William and Wilkins; 2001. p. 633–5.

    Google Scholar 

  89. Yingling CD, Ojemann S, Dodson B, Harrington MJ, Berger MS. Identification of motor pathways during tumor surgery facilitated by multichannel electromyographic recording. J Neurosurg. 1999;91:922–7.

    Article  CAS  PubMed  Google Scholar 

  90. Szelényi A, Hattingen E, Weidauer S, Seifert V, Ziemann U. Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery. 2010;67:302–13.

    Article  PubMed  Google Scholar 

  91. Ojemann G, Dodrill CB. Verbal memory deficits after left temporal lobectomy for epilepsy. Mechanism and intraoperative prediction. J Neurosurg. 1985;62(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  92. Lüders H, Lesser RP, Hahn J, et al. Basal temporal language area. Brain. 1991;114:743–54.

    Article  PubMed  Google Scholar 

  93. Ojemann GA. Cortical organization of language. J Neurosci. 1991;11(8):2281–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schaffler L, Luders HO, Morris HH 3rd, et al. Anatomic distribution of cortical language sites in the basal temporal language area in patients with left temporal lobe epilepsy. Epilepsia. 1994;35:525–8.

    Article  CAS  PubMed  Google Scholar 

  95. Hamberger MJ, Williams AC, Schevon CA. Extraoperative neurostimulation mapping: results from an international survey of epilepsy surgery programs. Epilepsia. 2014;55:933–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  97. Behrens E, Zentner J, van Roost D, et al. Subdural and depth electrodes in the presurgical evaluation of epilepsy. Acta Neurochir. 1994;128:84–7.

    Article  CAS  PubMed  Google Scholar 

  98. Silbergeld DL. A new device for cortical stimulation mapping of surgically unexposed cortex: technical mote. J Neurosurg. 1993;79:612–4.

    Article  CAS  PubMed  Google Scholar 

  99. Wellmer J, von der Groeben F, Klarmann U, et al. Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia. 2012;53:1322–32.

    Article  PubMed  Google Scholar 

  100. Wyler AR, Walker G, Somes G. The morbidity of long-term seizure monitoring using subdural strip electrodes. J Neurosurg. 1991;74:734–7.

    Article  CAS  PubMed  Google Scholar 

  101. Hedegard E, Bjellvi J, Edelvik A, et al. Complications to invasive epilepsy surgery workup with subdural and depth electrodes: a prospective population-based observational study. J Neurol Neurosurg Psychiatry. 2014;85:716–20.

    Article  PubMed  Google Scholar 

  102. Romstock J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C. Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry. 2002;72:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cervenka MC, Boatman-Reich DF, Ward J, Franaszczuk PJ, Crone NE. Language mapping in multilingual patients: electrocorticography and cortical stimulation during naming. Front Hum Neurosci. 2011;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cervenka MC, Corines J, Boatman-Reich DF, Eloyan A, Sheng X, Franaszczuk PJ, et al. Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming. NeuroImage. 2013;69:267–76.

    PubMed  Google Scholar 

  105. Duffeau H. Brain mapping in tumors: intraoperative or extraoperative? Epilepsia. 2013;54(Suppl. 9):79–83.

    Google Scholar 

  106. Hamberger MJ, Seidel WT, McKhann GM 2nd, Perrine K, Goodman RR. Brain stimulation reveals critical auditory naming cortex. Brain. 2005;128(Pt 11):2742–9.

    PubMed  Google Scholar 

  107. Rofes A, Mandonnet E, de Aguiar V, et al. Language processing from the perspective of electrical stimulation mapping. Cogn Neuropsychol. 2018; https://doi.org/10.1080/02643294.2018.1485636.

  108. Hermann B, Davies K, Foley K, Bell B. Visual confrontation naming outcome after standard left anterior temporal lobectomy with sparing versus resection of the superior temporal gyrus: a randomized prospective clinical trial. Epilepsia. 1999;40(8):1070–6.

    Article  CAS  PubMed  Google Scholar 

  109. De Witt Hamer PC, Gil Robles S, Zwinderman A, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30:2559–65.

    PubMed  Google Scholar 

  110. Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. 2008;49(8):1377–94.

    PubMed  PubMed Central  Google Scholar 

  111. Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. 2010;133(Pt 4):1186–99.

    PubMed  PubMed Central  Google Scholar 

  112. Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL 3rd, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60(11):1788–92.

    CAS  PubMed  Google Scholar 

  113. Rolinski R, Austermuehle A, Wiggs E, et al. Functional MRI and direct cortical stimulation: Prediction of postoperative language decline. Epilepsia. 2019; https://doi.org/10.1111/epi.14666.

  114. Berl MM, Zimmaro LA, Khan OI, et al. Characterization of atypical language activation patterns in focal epilepsy. Ann Neurol. 2014;75:33–42.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Simos PG, Breier JI, Maggio WW, Gormley WB, Zouridakis G, Willmore LJ, et al. Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport. 1999;10(1):139–42.

    Article  CAS  PubMed  Google Scholar 

  116. Castillo EM, Breier JI, Wheless JW, Slater JD, Tandon N, Baumgartner JE, et al. Contributions of direct cortical stimulation and MEG recordings to identify “essential” language cortex. Epilepsia. 2005;46(S8):324. Abstract

    Article  Google Scholar 

  117. Babajani-Feremi A, Narayana S, Rezaie R, Choudhri AF, Fulton SP, Boop FA, Wheless JW, Papanicolaou AC. Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation. Clin Neurophysiol. 2016;127(3):1822–36.

    Article  PubMed  Google Scholar 

  118. Picht T, Krieg SM, Sollmann N, Rosler J, Niraula B, Neuvonen T, et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery. 2013;72(5):808–19.

    Article  PubMed  Google Scholar 

  119. Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117(2):354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Papanicolaou AC, Rezaie R, Narayana S, Choudhri AF, Babajani-Feremi A, Boop FA, Wehless JW. On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery. Epilepsy Res. 2018;142:153–5.

    Article  PubMed  Google Scholar 

  121. Cushing H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain. 1909;32:44–53.

    Article  Google Scholar 

  122. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown; 1954.

    Book  Google Scholar 

  123. Szélenyi A, Bello L, Duffeau H, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28(2):E7.

    Article  PubMed  Google Scholar 

  124. Deletis V, Shils J, editors. Neurophysiology in neurosurgery. A modern intraoperative approach. Amsterdam, London, New York: Academic Press, Elsevier; 2002.

    Google Scholar 

  125. Møller AR. Intraoperative neurophysiological monitoring. New York, Heidelberg, London: Springer; 2011.

    Book  Google Scholar 

  126. Nuwer M. Intraoperative monitoring of neuronal function. Amsterdam, Boston, Heidelberg, London, New York: Elsevier; 2008.

    Google Scholar 

  127. Schramm J, Moller AR. Intraoperative neurophysiological monitoring in neurosurgery. Berlin, Heidelberg, New York: Springer; 1991a.

    Book  Google Scholar 

  128. Schramm J, Moller AR. Intraoperative neurophysiologic monitoring in neurosurgery. Berlin, New York: Srpinger; 1991b.

    Book  Google Scholar 

  129. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32:219–26.

    Article  CAS  PubMed  Google Scholar 

  130. Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–70.

    Article  CAS  PubMed  Google Scholar 

  131. Woolsey CN, Erickson TC, Gilson WE. Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg. 1979;51:476–506.

    Article  CAS  PubMed  Google Scholar 

  132. Salanova V, Morris HH 3rd., Van Ness PC, et al. Comparison of scalp electroencephalogram with subdural electrocorticogram recordings and functional mapping in frontal lobe epilepsy. Arch Neurol. 1993;50:294–9.

    Article  CAS  PubMed  Google Scholar 

  133. Branco DM, Coelho T, Branco BM, et al. Functional variability of the human cortical motor map: Electrical stimulation findings in perirolandic epilepsy surgery. J Clin Neurophysiol. 2003;20(1):17–25.

    Article  PubMed  Google Scholar 

  134. Szelényi A, Joksimovic B, Seifert V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol. 2007;24(1):39–43.

    Article  PubMed  Google Scholar 

  135. Goldstein HE, Smith EH, Gross RE, et al. Risk of seizures induced by intracranial research stimulation: analysis of 770 stimulation sessions. J Neural Eng. 2019; https://doi.org/10.1088/1741-2552/ab4365.

  136. Jain P, Whitney R, Strantzas S, et al. Intra-operative cortical motor mapping using subdural grid electrodes in children undergoing epilepsy surgery evaluation and comparison with the conventional extra-operative motor mapping. Clin Neurophysiol. 2018;129:2642–9.

    Article  PubMed  Google Scholar 

  137. Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J Neurosurg. 1998;88:349–51.

    Article  CAS  PubMed  Google Scholar 

  138. Ossenblok P, Leijten FS, de Munck JC, et al. Magnetic source imaging contributes to the presurgical identification of sensorimotor cortex in patients with frontal lobe epilepsy. Clin Neurophysiol. 2003;114:221–32.

    Article  CAS  PubMed  Google Scholar 

  139. Säisänen L, Könönen M, Julkunen P, et al. Non-invasive preoperative localization of primary motor cortex in epilepsy surgery by navigated transcranial magnetic stimulation. Epilepsy Res. 2010;92:134–43.

    Article  PubMed  Google Scholar 

  140. Berger MS, Hadjipanayis CG. Surgery of intrinsic cerebral tumors. Neurosurgery. 2007;61(Suppl 1):279–305.

    Article  PubMed  Google Scholar 

  141. Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Tail-landier L, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003;98:764–78.

    Article  PubMed  Google Scholar 

  142. Kamada K, Todo T, Ota T, Ino K, Masutani Y, Aoki S, et al. The motor-evoked potential threshold evaluated by tractography and electrical stimulation. Clinical article. J Neurosurg. 2009;111:785–95.

    Article  PubMed  Google Scholar 

  143. Kombos T, Süss O, Vajkoczy P. Subcortical mapping and monitoring during insular tumor surgery. Neurosurg Focus. 2009;27(4):E5.

    Article  PubMed  Google Scholar 

  144. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, et al. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article. J Neurosurg. 2011;114:738–46.

    Article  PubMed  Google Scholar 

  145. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery. 2012;70:283–94.

    Article  PubMed  Google Scholar 

  146. Prabhu SS, Gasco J, Tummala S, Weinberg JS, Rao G. Intra-operative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg. 2011;114:719–26.

    Article  PubMed  Google Scholar 

  147. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120:1015–24.

    Article  PubMed  Google Scholar 

  148. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. Clinical article. J Neurosurg. 2013a;118:287–96.

    Article  PubMed  Google Scholar 

  149. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013b;118:287–96.

    Article  PubMed  Google Scholar 

  150. Neuloh G, Schramm J. Intraoperative neurophysiological mapping and monitoring for supratentorial procedures. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery. Amsterdam, Boston, London: Academic Press; 2002. p. 339–401.

    Chapter  Google Scholar 

  151. MacDonald DB, Dong C, Qatrale R, et al. Recommendations of the International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol. 2019;130(1):161–79.

    Article  CAS  PubMed  Google Scholar 

  152. MacDonald DB, Skinner S, Shils J, et al. Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124(12):2291–316.

    Article  CAS  PubMed  Google Scholar 

  153. Nuwer M. Evoked potential monitoring in the operating Room. New York: Raven Press; 1986.

    Google Scholar 

  154. Zentner J, Kiss I, Ebner A. Influence of anesthetics—nitrous oxide in particular—on electromyographic response evoked by transcranial electrical stimulation of the cortex. Neurosurgery. 1989;24:253–6.

    Article  CAS  PubMed  Google Scholar 

  155. Pechstein U, Cedzich C, Nadstawek J, Schramm J. Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery. 1996;39:335–43. discussion 343–344

    Article  CAS  PubMed  Google Scholar 

  156. Taylor BA, Fennelly ME, Taylor A, Farrell J. Temporal summation: the key to motor evoked potential spinal cord monitoring in humans. J Neurol Neurosurg Psychiatry. 1993;56:104–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Scheufler KM, Zentner J. Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg. 2002;96:571–9.

    Article  CAS  PubMed  Google Scholar 

  158. Calancie B, Harris W, Brindle GF, Green BA, Landy HJ. Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. J Neurosurg. 2001;95:161–8.

    CAS  PubMed  Google Scholar 

  159. de Haan P, Kalkman CJ. Spinal cord monitoring: somatosensory- and motor-evoked potentials. Anesthesiol Clin N Am. 2001;19:923–45.

    Article  Google Scholar 

  160. Deletis V. Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol. 1993;63:201–14.

    CAS  PubMed  Google Scholar 

  161. Jacobs MJ, Meylaerts SA, de Haan P, de Mol BA, Kalkman CJ. Assessment of spinal cord ischemia by means of evoked potential monitoring during thoracoabdominal aortic surgery. Semin Vasc Surg. 2000;13:299–307.

    CAS  PubMed  Google Scholar 

  162. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA. Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol. 1996;100:375–83.

    Article  CAS  PubMed  Google Scholar 

  163. Kothbauer K, Deletis V, Epstein FJ. Intraoperative spinal cord monitoring for intramedullary surgery: an essential adjunct. Pediatr Neurosurg. 1997;26:247–54.

    Article  CAS  PubMed  Google Scholar 

  164. Nuwer MR. Measuring outcomes for neurophysiological intraoperative monitoring. Clin Neurophysiol. 2015;127(1):3–4.

    Article  PubMed  Google Scholar 

  165. Mendiratta A, Emerson RG. Transcranial electrical MEP with muscle recording. In: Nuwer MR, editor. Intraoperative monitoring of neural function. Boston, Heidelberg, New York: Elsevier; 2008. p. 260–71.

    Chapter  Google Scholar 

  166. Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2004;54:1061–72.

    Article  PubMed  Google Scholar 

  167. Kombos T, Suess O, Ciklatekerlio O, Brock M. Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg. 2001;95:608–14.

    Article  CAS  PubMed  Google Scholar 

  168. Kothbauer KF, Deletis V, Epstein FJ. Intraoperative monitoring. Pediatr Neurosurg. 1998;29:54–5.

    Article  CAS  PubMed  Google Scholar 

  169. Zhou HH, Kelly PJ. Transcranial electrical motor evoked potential monitoring for brain tumor resection. Neurosurgery. 2001;48:1075–81.

    CAS  PubMed  Google Scholar 

  170. Weinzierl MR, Reinacher P, Gilsbach M, et al. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007;30:109–16.

    Article  CAS  PubMed  Google Scholar 

  171. Horsley V. Brain-surgery. Br Med J. 1886;2:670–5.

    Article  Google Scholar 

  172. Sachs E. The subpial resection of the cortex in the treatment of Jacksonian epilepsy (Horsley operation) with observations on areas 4 and 6. Brain. 1935;58:492–503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). Surgical Tools and Techniques. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_4

Download citation

Publish with us

Policies and ethics