Skip to main content

Presurgical Evaluation

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies
  • 547 Accesses

Abstract

The selection of appropriate candidates for surgical treatment requires comprehensive evaluation. It has to be confirmed that seizures fulfill the criteria of drug resistance, that the patient has been adequately treated, and that non-epileptic disorders are ruled out. The essential prerequisite for a resective surgical procedure is the evidence that seizures arise in a circumscribed area, known as the epileptogenic zone, and that this area can be resected without harm. Presurgical evaluation aims at the definition of the epileptogenic zone, removal of which per definition leads to seizure freedom. It is based on clinical, neuropsychological, and psychiatric assessment, neuroimaging, and electrophysiological diagnostics. MRI providing evidence of the structural basis of focal epilepsy has proven to be the key diagnostic tool guiding the surgeon, and removal of the structural abnormality has been shown to be the most important prognostic factor for postoperative seizure freedom. In addition to the definition of the epileptogenic area, presurgical assessment has to evaluate the chances of controlling seizures and improve the patient’s quality of life with surgery. Risks of surgery, especially regarding cognitive functions, have to be weighed up against the risks associated with continuous medical treatment. Progress of diagnostic workup is discussed in regular intervals in the interdisciplinary epilepsy conference consisting of a core team of epileptologists, neuropsychologists, neuropsychiatrists, neuroradiologists, EEG technicians, and neurosurgeons. Having reached consensus, the team formulates a detailed plan to proceed. When all presurgical information points to a unifying location, i.e., when data from clinical, neuropsychological, and electrophysiological studies as well as from imaging modalities are congruent, the patient can proceed to surgical treatment.

He who studies medicine without books sails an uncharted sea, but he who studies medicine without patients does not go to sea at all.

William Osler

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bien CG, Raabe AL, Schramm J, Becker A, Urbach H, Elger CE. Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009. J Neurol Neurosurg Psychiatry. 2013;84:54–61.

    Article  PubMed  Google Scholar 

  2. Kral T, Clusmann H, Urbach H, et al. Preoperative evaluation for epilepsy surgery (Bonn algorithm). Zentralbl Neurochir. 2002;63:106–10.

    Article  CAS  PubMed  Google Scholar 

  3. Kwon C-S, Neal J, Tellez-Zenteno J, et al. Resective focal epilepsy surgery—Has selection of candidates changed? A systematic review. Epilepsy Res. 2016;122:37–43.

    Article  PubMed  Google Scholar 

  4. Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain. 2001;124:1683–700.

    Article  CAS  PubMed  Google Scholar 

  5. Ryvlin P, Rheims S. Epilepsy surgery: eligibility criteria and presurgical evaluation. Dialogues Clin Neurosci. 2008;10(1):91–103.

    PubMed  PubMed Central  Google Scholar 

  6. Vakharia VN, Duncan JS, Witt J-A, et al. Getting the best outcomes from epilepsy surgery. Ann Neurol. 2018;83(4):676–90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lüders H, Awad I. Conceptual considerations. In: Lüders H, editor. Epilepsy surgery. New York: Raven Press; 1992. p. 51–62.

    Google Scholar 

  8. Wellmer J. Lesion focused radiofrequency thermocoagulation of bottom-of-sulcus focal cortical dysplasia type IIb: conceptional considerations with regard to the epileptogenic zone. Epilepsy Research 2018; https://doi.org/10.1016/j.eplepsyres.2018.02.009.

  9. Grinenko O, Li J, Mosher JC, Wang IZ, Bulacio JC, Gonzalez-Martinez J, Nair D, Najm I, Leahy RM, Chauvel P. A fingerprint of the epileptogenic zone in human epilepsies. Brain. 2018;141(1):117–31.

    Article  PubMed  Google Scholar 

  10. Labiner DM, Bagic AI, Herman ST, Fountain NB, Walczak TS, Gumnit RJ, the National Association of Epilepsy Centers. Essential services, personnel, and facilities in specialized epilepsy centers–revised 2010 guidelines. Epilepsia. 2010;51:2322–33.

    Article  PubMed  Google Scholar 

  11. Loddenkemper T, Kotagal P. Lateralizing signs during seizures in focal epilepsy. Epilepsy Behav. 2005;7:1–17.

    PubMed  Google Scholar 

  12. Stoyke C, Bilgin Ö, Noachtar S. Video atlas of lateralising and localizing seizure phenomena. Epileptic Disord. 2011;13:113–24.

    PubMed  Google Scholar 

  13. Leutmezer F, Baumgartner C. Postictal signs of lateralizing and localizing significance. Epileptic Disord. 2002;4:43–8.

    PubMed  Google Scholar 

  14. Kotagal P, Bleasel A, Geller E, Kankirawatana P, Moorjani BI, Rybicki L. Lateralizing value of asymmetric tonic limb posturing observed in secondarily generalized tonic–clonic seizures. Epilepsia. 2000;41:457–62.

    Article  CAS  PubMed  Google Scholar 

  15. Helmstaedter C. Neuropsychological aspects of epilepsy surgery. Epilepsy Behav. 2004;5:45–55.

    Article  Google Scholar 

  16. Helmstaedter C, Witt J-A. Clinical neuropsychology in epilepsy: theoretical and practical issues. Handb Clin Neurol. 2012;107:437–59.

    Article  PubMed  Google Scholar 

  17. Witt J-A, Coras R, Schramm J, et al. Relevance of hippocampal integrity for memory outcome after surgical treatment of mesial temporal lobe epilepsy. J Neurol. 2015;262(10):2214–24.

    Article  PubMed  Google Scholar 

  18. Guerrini R, Scerrati M, Rubboli G, et al. Overview of presurgical assessment and surgical treatment of epilepsy from the Italian League Against Epilepsy. Epilepsia. 2013;54(Suppl. 7):35–48.

    Article  PubMed  Google Scholar 

  19. Brückner K. Standard der neuropsychologischen Testung in der prächirurgischen Epilepsiediagnostik. Z Epileptol. 2012;25:59–63.

    Google Scholar 

  20. Gleissner U, Helmstaedter C, Elger CE. Right hippocampal contribution to visual memory: a presurgical and postsurgical study in patients with temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 1998;65:665–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helmstaedter C, Grunwald T, Lehnertz K, et al. Differential involvement of left temporolateral and temporomesial structures in verbal declarative learning and memory: evidence from temporal lobe epilepsy. Brain Cogn. 1997;35:110–31.

    CAS  PubMed  Google Scholar 

  22. Hermann BP, Perrine K, Chelune GJ, Barr W, Loring DW, Strauss E, Trenerry MR, Westerveld M. Visual confrontation naming following left anterior temporal lobectomy: a comparison of surgical approaches. Neuropsychology. 1999;13(1):3–9.

    CAS  PubMed  Google Scholar 

  23. Ives-Deliperi VL, Butler JT. Naming outcomes of anterior temporal lobectomy in epilepsy patients: a systematic review of the literature. Epilepsy Behav. 2012;24(2):194–8.

    PubMed  Google Scholar 

  24. Frisk V, Milner B. The role of the left hippocampal region in the acquisition and retention of story content. Neuropsychologia. 1990;28(4):349–59.

    CAS  PubMed  Google Scholar 

  25. Helmstaedter C, Kurthen M, Linke DB, Elger CE. Right hemisphere restitution of language and memory functions in right hemisphere language-dominant patients with left temporal lobe epilepsy. Brain. 1994;117(4):729–37.

    PubMed  Google Scholar 

  26. Helmstaedter C, Pohl C, Elger CE. Relations between verbal and nonverbal memory performance: Evidence of confounding effects particularly in patients with right temporal lobe epilepsy. Cortex. 1995;31(2):345–55.

    CAS  PubMed  Google Scholar 

  27. Sidhu MK, Stretton J, Winston GP, et al. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology. 2015;84(15):1512–9.

    PubMed  PubMed Central  Google Scholar 

  28. Bonelli SB, Thompson PJ, Yogarajah M, et al. Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study. Epilepsia. 2012;53(4):639–50.

    PubMed  PubMed Central  Google Scholar 

  29. Massot-Tarrús A, White K, Mirsattari SM. Comparing the Wada test and functional MRI for the presurgical evaluation of memory in temporal lobe epilepsy. Curr Neurol Neurosci Rep. 2019;19:31.

    PubMed  Google Scholar 

  30. Shulman MB. The frontal lobes, epilepsy, and behavior. Epilepsy Behav. 2000;1:384–95.

    PubMed  Google Scholar 

  31. Koch-Stoecker S. Personality disorders as predictors of severe postsurgical psychiatric complications in epilepsy patients undergoing temporal lobe resections. Epilepsy Behav. 2002;3:526–31.

    Google Scholar 

  32. Cleary RA, Baxendale SA, Thompson PJ, Foong J. Predicting and preventing psychopathology following temporal lobe epilepsy surgery. Epilepsy Behav. 2013;26(3):322–34.

    Article  PubMed  Google Scholar 

  33. Devinsky O, Barr WB, Vickrey BG, Berg AT, Bazil CW, Pacia SV, Langfitt JT, Walczak TS, Sperling MR, Shinnar S, Spencer SS. Changes in depression and anxiety after resective surgery for epilepsy. Neurology. 2005;65:1744–49.

    Google Scholar 

  34. Wrench JM, Wilson SJ, O’Shea MF, Reutens DC. Characterizing de novo depression after epilepsy surgery. Epilepsy Res. 2009;83:81–8.

    Google Scholar 

  35. Adams SJ, O’Brien TJ, Lloyd J, Kilpatrick CJ, Salzberg MR, Velakoulis D. Neuropsychiatric morbidity in focal epilepsy. Br J Psychiatry. 2008; 192:464–9.

    Google Scholar 

  36. Koch-Stoecker SC, Bien CG, Schulz R, May TW. Psychiatric lifetime diagnoses are associated with a reduced chance of seizure freedom after temporal lobe surgery. Epilepsia. 2017;58(6):983–93.

    Article  PubMed  Google Scholar 

  37. Gill SJ, Lukmanji S, Fiest KM, et al. Depression screening tools in persons with epilepsy: a systematic review of validated tools. Epilepsia. 2017;58(5):695–705.

    Article  PubMed  Google Scholar 

  38. Perucca P, Mula M. Antiepileptic drug effects on mood and behavior: molecular targets. Epilepsy Behav. 2013;26(3):440–9.

    Article  PubMed  Google Scholar 

  39. Knake S, Triantafyllou C, Wald LL, et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology. 2005;65:1026–31.

    Article  CAS  PubMed  Google Scholar 

  40. Urbach H, Mast H, Egger K, Mader I. Presurgical MR imaging in epilepsy. Clin Neuroradiol. 2015;25(2):151–5.

    Article  PubMed  Google Scholar 

  41. Martinez A, Finegersh A, Cannon DM, Dustin I, Nugent A, Herscovitch P, Theodore WH. The 5-HT1A receptor and 5-HT transporter in temporal lobe epilepsy. Neurology. 2013;80:1465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89(2–3):310–8.

    Article  PubMed  Google Scholar 

  43. Bien CG, Szinai M, Wagner J, et al. Characteristics and surgical outcome of patients with refractory MRI-negative epilepsies. Arch Neurol. 2009a;66(12):1491–9.

    Article  PubMed  Google Scholar 

  44. Bien CG, Raabe AL, Schramm J, et al. Long-term developments in presurgical evaluation and surgical treatment of epilepsy at one tertiary center. Part II: Surgical outcome. Epilepsia. 2010;51(Suppl. 4):6.

    Google Scholar 

  45. Bien CG, Szinai M, Wagner J, Clusmann H, Becker AJ, Urbach H. Characteristics and surgical outcome of patients with refractory MRI-negative epilepsies. Arch Neurol. 2009b;66:1491–9.

    Article  PubMed  Google Scholar 

  46. Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011a;134:2844–54.

    Article  PubMed  Google Scholar 

  47. Wagner J, Wellmer J, Urbach H, et al. Focal cortical dysplasia type IIb: completeness of cortical, not subcortical resection is necessary for seizure freedom. Epilepsia. 2011b;52(8):1418–24.

    Article  PubMed  Google Scholar 

  48. Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia. 2013;44:1977–87.

    Article  Google Scholar 

  49. Urbach H. Imaging of the epilepsies. Eur Radiol. 2005;15:494–500.

    Article  CAS  PubMed  Google Scholar 

  50. von Oertzen J, Urbach H, Jungbluth S, Kurthen M, Reuber M, Fernandez G, Elger CE. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J Neurol Neurosurg Psychiatry. 2002;73:643–7.

    Article  Google Scholar 

  51. McBride MC, Bronstein KS, Bennett B, Erba G, Pilcher W, Berg MJ. Failure of standard magnetic resonance imaging in patients with refractory temporal lobe epilepsy. Arch Neurol. 1998;55:346–8.

    Article  CAS  PubMed  Google Scholar 

  52. Urbach H, editor. MRI in epilepsy. Berlin, Heidelberg: Springer; 2013.

    Google Scholar 

  53. Phal PM, Usmanov A, Nesbit GM, et al. Qualitative comparison of 3-T and 1.5-T MRI in the evaluation of epilepsy. AJR Am J Roentgenol. 2008;191(3):890–5.

    Article  PubMed  Google Scholar 

  54. Urbach H. High-filed magnetic resonance imaging for epilepsy. In: Willinek WA, editor. Applications of high-field MR imaging. Neuroimaging clinics of North America, vol. 22; 2012. p. 173–89.

    Google Scholar 

  55. Lummel N, Schoepf V, Burke M, Brueckmann H, Linn J. 3D fluid-attenuated inversion recovery imaging: reduced CSF artifacts and enhanced sensitivity and specificity for subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2011;32:2054–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saini J, Kesavadas C, Thomas B, Kapilamoorthy TR, Gupta AK, Radhakrishnan A, Radhakrishnan K. Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy. Epilepsia. 2009;50:1462–73.

    Article  PubMed  Google Scholar 

  57. Chatzikonstantinou A, Gass A, F€orster A, Hennerici MG, Szabo K. Features of acute DWI abnormalities related to status epilepticus. Epilepsy Res 2011; 97: 45–51.

    Google Scholar 

  58. Nyberg E, Sandhu GS, Jesberger J, Blackham KA, Hsu DP, Griswold MA, Sunshine JL. Comparison of brain MR images at 1.5T using BLADE and rectilinear techniques for patients who move during data acquisition. AJNR. 2012;33:77–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huppertz HJ, Wellmer J, Staack AM, Altenmüller DM, Urbach H, KrÖll J. Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia. Epilepsia. 2008;49(5):772–85.

    Article  PubMed  Google Scholar 

  60. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49:1271–81.

    Article  PubMed  Google Scholar 

  61. Rugg-Gunn FJ, Boulby PA, Symms MR, Barker GJ, Duncan JS. Imaging the neocortex in epilepsy with double inversion recovery imaging. NeuroImage. 2006;31:39–50.

    Article  PubMed  Google Scholar 

  62. Bonhila L, Lee CY, Jensen JH, et al. Altered microstructure in temporal lobe epilepsy: A diffusional kurtosis imaging study. Am J Neuroradiol. 2015;36(4):719–24.

    Article  Google Scholar 

  63. Serles W, Baumgartner C, Feichtinger M, Felber S, Feucht M, Podreka I, Prayer D, Trinka E. Richtlinien f€ur ein standardisiertes MRT- Protokoll für Patienten mit epileptischen Anfällen in Österreich. Mitteilungen der Österreichischen Sektion der Internationalen Liga Gegen Epilepsie. 2003;3:2–13.

    Google Scholar 

  64. Deblaere K, Achten E. Structural magnetic resonance imaging in epilepsy. Eur Radiol. 2008;18:119–29.

    Article  PubMed  Google Scholar 

  65. Jackson GD, Badawy RA. Selecting patients for epilepsy surgery: identifying a structural lesion. Epilepsy Behav. 2011;20:182–9.

    Article  PubMed  Google Scholar 

  66. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F, Coras R, Cross JH, Jacques TS, Kahane P, Mathern GW, Miyata H, Moshé SL, Oz B, Özkara Ç, Perucca E, Sisodiya S, Wiebe S, Spreafico R. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia. 2013;54:1315–29.

    Article  PubMed  Google Scholar 

  67. Urbach H, Huppertz HJ, Schwarzwald R, Becker AJ, Wagner J, Delsous Bahri M, Tschampa HJ. Is the type and extent of hippocampal sclerosis measurable on high-resolution MRI? Neuroradiology. 2014;56:731–5.

    Article  CAS  PubMed  Google Scholar 

  68. Lampinen B, Zampeli A, Björkman-Burtscher IM, et al. Tensor-valued diffusion MRI differentiates cortex and white matter in malformations of cortical development associated with epilepsy. Epilepsia 2020. https://doi.org/10.1111/epi.16605.

  69. Colliot O, Bernasconi N, Khalili N, Antel SB, Naessens V, Bernasconi A. Individual voxel-based analysis of gray matter in focal cortical dysplasia. NeuroImage. 2006;29:162–71.

    Article  CAS  PubMed  Google Scholar 

  70. Bernhardt BC, Bernasconi N, Concha L, Bernasconi A. Cortical thickness analysis in temporal lobe epilepsy: reproducibility and relation to outcome. Neurology. 2010;74:1776–84.

    Article  PubMed  Google Scholar 

  71. Huppertz HJ, Grimm C, Fauser S, Kassubek J, Mader I, Hochmuth A, Spreer J, Schulze-Bonhage A. Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res. 2005;67:35–50.

    Article  PubMed  Google Scholar 

  72. Thesen T, Quinn BT, Carlson C, Devinsky O, DuBois J, McDonald CR, French J, Leventer R, Felsovalyi O, Wang X, Halgren E, Kuzniecky R. Detection of epileptogenic cortical malformations with surface-based MRI morphometry. PLoS One. 2011;6:e16430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Besson P, Andermann F, Dubeau F, Bernasconi A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain. 2008;131:3246–55.

    Article  PubMed  Google Scholar 

  74. Ronan L, Murphy K, Delanty N, Doherty C, Maguire S, Scanlon C, Fitzsimons M. Cerebral cortical gyrification: a preliminary investigation in temporal lobe epilepsy. Epilepsia. 2007;48:211–9.

    Article  PubMed  Google Scholar 

  75. Bernasconi A, Antel SB, Collins DL, Bernasconi N, Olivier A, Dubeau F, Pike GB, Andermann F, Arnold DL. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann Neurol. 2001;49:770–5.

    Article  CAS  PubMed  Google Scholar 

  76. De Oliveira MS, Betting LE, Mory SB, Cendes F, Castellano G. Texture analysis of magnetic resonance images of patients with juvenile myoclonic epilepsy. Epilepsy Behav. 2013;27:22–8.

    Article  PubMed  Google Scholar 

  77. Focke NK, Bonelli SB, Yogarajah M, et al. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia. 2009;50(6):1484–90.

    Google Scholar 

  78. Bernasconi A, Bernasconi N, Bernhardt BC, Schrader D. Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol. 2011;7:99–108.

    Article  PubMed  Google Scholar 

  79. Gross DW. Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia. 2011;52:32–4.

    Article  PubMed  Google Scholar 

  80. Widjaja E, Zarei Mahmoodabadi S, Otsubo H, Snead OC, Holowka S, Bells S, Raybaud C. Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology. 2009;251:206–15.

    Article  PubMed  Google Scholar 

  81. Concha L, Kim H, Bernasconi A, Bernhardt BC, Bernasconi N. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology. 2012;79:455–62.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Guye M, Ranjeva JP, Bartolomei F, Confort-Gouny S, McGonigal A, Régis J, Chauvel P, Cozzone PJ. What is the significance of interictal water diffusion changes in frontal lobe epilepsies? NeuroImage. 2007;35:28–37.

    Article  CAS  PubMed  Google Scholar 

  83. Hutchinson E, Pulsipher D, Dabbs K, Myers y Gutierrez A, Sheth R, Jones J, Seidenberg M, Meyerand E, Hermann B. Children with new-onset epilepsy exhibit diffusion abnormalities in cerebral white matter in the absence of volumetric differences. Epilepsy Res. 2010;88:208–14.

    Article  PubMed  Google Scholar 

  84. Oh JB, Lee SK, Kim KK, Song IC, Chang KH. Role of immediate postictal diffusion-weighted MRI in localizing epileptogenic foci of mesial temporal lobe epilepsy and non-lesional neocortical epilepsy. Seizure. 2004;13:509–16.

    Article  PubMed  Google Scholar 

  85. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–55.

    Article  PubMed  Google Scholar 

  86. Raffelt D, Tournier J-D, Rose S, Ridgway GR, Henderson R, Crozier S, Salvado O, Connelly A. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012;59(4):3976–94.

    Google Scholar 

  87. Levin BE, Katzen HL, Maudsley A, Post J, Myerson C, Govind V, Nahab F, Scanlon B, Mittel A. Whole-brain proton MR spectroscopic imaging in Parkinson’s disease. J Neuroimaging. 2014;24:39–44.

    Article  PubMed  Google Scholar 

  88. Connelly A, Jackson GD, Duncan JS. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology. 1994;44(8):1411. https://doi.org/10.1212/WNL.44.8.1411.

    Article  CAS  PubMed  Google Scholar 

  89. Guye M, Fur YL, Confort-Gouny S, Ranjeva J-P. Metabolic and electrophysiological alterations in subtypes of temporal lobe epilepsy: a combined proton magnetic resonance spectroscopic imaging and depth electrodes study. Epilepsia. 2002;43(10):1197–209.

    Article  PubMed  Google Scholar 

  90. Pan JW, Spencer DD, Kuzniecky R, Duckrow RB, Hetherington H, Spencer SS. Metabolic networks in epilepsy by MR spectroscopic imaging. Acta Neurol Scand. 2012;126:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oldfield RC. The assessment and analysis of handedness. Neuropsychologia. 1971;9:97–113.

    Article  CAS  PubMed  Google Scholar 

  92. Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PS, Brewer CC, Perry HM, Morris GL, Mueller WM. Language dominance in neurologically normal and epilepsy subjects. Brain. 1999;122:2033–45.

    Article  PubMed  Google Scholar 

  93. Bauer P, Reitsma JB, Houweling BM, Ferrier CH, Ramsey NF. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J Neurol Neurosurg Psychiatry. 2014;85(5):581–8.

    Article  PubMed  Google Scholar 

  94. Wellmer J, Weber B, Urbach H, et al. Cerebral lesions can impair fMRI-based language lateralization. Epilepsia. 2009;50(10):2213–24.

    Article  PubMed  Google Scholar 

  95. You X, Zachery AN, Fanto EJ, et al. fMRI prediction of naming change after adult temporal lobe epilepsy surgery: activation matters. Epilepsia. 2019; https://doi.org/10.1111/epi.14656.

  96. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage. 2010;53:1–15. IEEE 2019

    Article  PubMed  Google Scholar 

  97. Anastasopoulos C, Reisert M, Kiselev VG, Nguyen-Thanh T, Schulze-Bonhaage A, Zentner J, Mader I. Local and global fiber tractography in patients with epilepsy. AJNR Am J Neuroradiol. 2014;35:291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Winston GP, Daga P, Stretton J, Modat M, Symms MR, McEvoy AW, Ourselin S, Duncan JS. Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol. 2012;71:334.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy, Part 1: Sporadic temporal and extratemporal lobe epilepsy. JNMT. 2017a;45:114–21.

    Google Scholar 

  100. Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy. Part 2: Epilepsy syndromes. JNMT. 2017b;45:122–9.

    Google Scholar 

  101. Kuzniecky RI, Knowlton RC. Neuroimaging of epilepsy. Semin Neurol. 2002;22:279–88.

    PubMed  Google Scholar 

  102. Willmann O, Wennberg R, May T, et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy. A meta-analysis. Seizure. 2007;16(6):509–20.

    CAS  PubMed  Google Scholar 

  103. Rubi S, Setoain X, Donaire A, Bargalló N, Sanmartí F, Carreño M, Rumià J, Calvo A, Aparicio J, Campistol J, Pons F. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia. 2011;52:2216–124.

    PubMed  Google Scholar 

  104. Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016;15(4):420–33.

    PubMed  PubMed Central  Google Scholar 

  105. Picard F. New PET tracer in epilepsy. Epileptologie. 2007;24:66–72.

    Google Scholar 

  106. Desai A, Bekelis K, Thadani VM, et al. Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia. 2013;54:341–50.

    PubMed  Google Scholar 

  107. la Fougère C, Rominger A, Förster S, et al. PET and SPECT in epilepsy: a critical review. Epilepsy Behav. 2009;15(1):50–5.

    PubMed  Google Scholar 

  108. Schulze-Bonhage A, Zentner J. The preoperative evaluation and surgical treatment of epilepsy. Dtsch Arztebl Int. 2014;111:313–9.

    PubMed  PubMed Central  Google Scholar 

  109. Cascino GD. Video-EEG monitoring in adults. Epilepsia. 2002;43(Suppl. 3):80–93.

    PubMed  Google Scholar 

  110. Cross JH, Jayakar P, Nordli D, Delalande O, Duchowny M, Wieser HG, et al. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia. 2006 Jun;47(6):952–9.

    PubMed  Google Scholar 

  111. Grouiller F, Thornton RC, Groening K, et al. With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain. 2011;134(Pt 10):2867–86.

    PubMed  PubMed Central  Google Scholar 

  112. Pittau F, Dubeau F, Gotman J. Contribution of EEG/fMRI to the definition of the epileptic focus. Neurology. 2012;78:1479–87.

    PubMed  PubMed Central  Google Scholar 

  113. Kowalczyk MA, Omidvarnia A, Abbott DF, et al. Clinical benefit of presurgical EEG-fMRI in difficult-to-localize focal epilepsy: a single-institution retrospective review. Epilepsia. 2019;

    Google Scholar 

  114. Rampp S, Stefan H, Wu X, et al. Magnetoencephalography for epileptic focus localization in a series of 1000 cases. Brain. 2019;142(10):3059–71.

    PubMed  Google Scholar 

  115. Englot DJ, Nagarajan SS, Imber BS, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia. 2015;56(6):949–58.

    PubMed  PubMed Central  Google Scholar 

  116. Burgess R. Magnetoencephalography for localizing and characterizing the epileptic focus. In: Levin KH, Chauvel P, editors. Handbook of clinical neurology, Clinical neurophysiology: basis and technical aspects, vol. 160 (3rd series): Elsevier; 2019. https://doi.org/10.1016/B978-0-444-64032-1.00013-8.

  117. Chaudhary UJ, Carmichael DW, Rodionov R, et al. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain. 2012;135(Pt 12):3645–63.

    PubMed  Google Scholar 

  118. Thornton R, Vulliemoz S, Rodionov R, et al. Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol. 2011;70(5):822–37.

    PubMed  PubMed Central  Google Scholar 

  119. Van Houdt PJ, de Munck JC, Leijten FSS, et al. EEG-fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. NeuroImage. 2013;75:238–48.

    Article  PubMed  Google Scholar 

  120. Mouthaan BE, Rados M, Boon P, et al. Diagnostic accuracy of interictal source imaging in presurgical epilepsy evaluation: a systematic review from the E-PILEPSY consortium. Clin Neurophysiol. 2019;130(5):845–55.

    Article  PubMed  Google Scholar 

  121. Zumsteg D, Wieser HG. Presurgical evaluation: current role of invasive EEG. Epilepsia. 2000;41(Suppl. 3):S55–60.

    Article  PubMed  Google Scholar 

  122. Chauvel P, Gonzales-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. In: Levin KH, Chauvel P, editors. Handbook of clinical neurology, Clinical neurophysiology: diseases and disorders, vol. 161 (3rd series): Elsevier B.V; 2019. https://doi.org/10.1016/B978-0-444-64142-7.00045-X.

  123. Behrens E, Zentner J, van Roost D, et al. Subdural and depth electrodes in the presurgical evaluation of epilepsy. Acta Neurochir. 1994;128:84–7.

    Article  CAS  PubMed  Google Scholar 

  124. Rosenbaum TJ, Laxer KD. Subdural electrode recordings for seizure focus localization. J Epilepsy. 1989;2:129–35.

    Article  Google Scholar 

  125. Wellmer J, von der Groeben F, Klarmann U, Weber C, Elger CE, Urbach H, Clusmann H, von Lehe M. Risks and benefits of invasive epilepsy surgery workup with implanted subdural and depth electrodes. Epilepsia. 2012;53(8):1322–32.

    Article  PubMed  Google Scholar 

  126. Sparks R, Zombori G, Rodionov R, et al. Automated multiple trajectory planning algorithm for the placement of stereo-electroencephalography (SEEG) electrodes in epilepsy treatment. Int J Comput Assist Radiol Surg. 2016:1–14.

    Google Scholar 

  127. Cardinale F, Casaceli G, Raneri F, Miller J, Lo RG. Implantation of stereoelectroencephalography electrodes: a systematic review. J Clin Neurophysiol. 2016;33(6):490–502.

    Article  PubMed  Google Scholar 

  128. Kim LH, Feng AY, Ho AL, et al. Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients. Epilepsy Res. 2020; https://doi.org/10.1016/j.eplepsyres.2019.106253.

  129. Whiting AC, Catapano JS, Zavala B, et al. Doing more with less: a minimally invasive, cost-conscious approach to stereoelectroencephalography. World Neurosurg. 2019; https://doi.org/10.1016/j.wneu.2019.09.055.

  130. Reinacher PC, Altenmüller D-M, Krüger M, et al. Simultaneous frame-assisted stereotactic placement of subdural grid electrodes and intracerebral depth electrodes. J Neurol Surg A. 2019;80:353–8.

    Article  Google Scholar 

  131. Olivier A, Gloor P, Quesney F, Andermann F. The indications for and the role of depth electrode recording in epilepsy. Appl Neurophysiol. 1983;46:33–6.

    CAS  PubMed  Google Scholar 

  132. Olivier A, Marchand E, Peters TM. Depth electrodes implantation at the Montreal Neurological Institute and hospital. In: Engel J, editor. Surgical treatment of the epilepsies. New York, NY: Raven Press; 1987. p. 595–602.

    Google Scholar 

  133. Olivier A, Boling W. Stereotactic intracranial recording (stereoencephalography). In: Schmidek HH, Sweet WH, editors. Operative neurosurgical techniques: indications, methods, and results. Philadelphia, PA: WB Sounders; 2000. p. 1511–28.

    Google Scholar 

  134. Ross D, Brunberg J, Drury I, Henry T. Intracerebral depth electrode monitoring in partial epilepsy: the morbidity and efficacy of placement using magnetic resonance image-guided stereotactic surgery. Neurosurgery. 1996;39:327–34.

    Article  CAS  PubMed  Google Scholar 

  135. Van Roost D, Solymosi L, Schramm J, et al. Depth electrode implantation in the length axis of the hippocampus for the presurgical evaluation of medial temporal lobe epilepsy: a computed tomography-based stereotactic insertion technique and its accuracy. Neurosurgery. 1988;43:819–27.

    Article  Google Scholar 

  136. Cardinale F, Cossu M, Castana L, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–66.

    Article  PubMed  Google Scholar 

  137. Woolfe M, Prime D, Gillinder L, et al. Automatic detection of the epileptogenic zone: An application of the fingerprint of epilepsy. J Neurosci Methods. 2019;325:108347. https://doi.org/10.1016/j.jneumeth.2019.108347.

    Article  PubMed  Google Scholar 

  138. Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia. 2013;54(5):828–39.

    Article  PubMed  Google Scholar 

  139. Taussig D, Montavont A, Isnard J. Invasive EEG explorations. Clinical Neurophysiology. 2015; https://doi.org/10.1016/j.neucli.2014.11.006.

  140. Burneo JG, Steven DA, McLachlan RS, Parrent AG. Morbidity associated with the use of intracranial electrodes for epilepsy surgery. Can J Neurol Sci. 2006;33:223–7.

    Article  PubMed  Google Scholar 

  141. Pilcher WH, Rusyniak WG. Complications of epilepsy surgery. Neurosurg Clin North Am. 1993;4:311–25.

    Article  CAS  Google Scholar 

  142. Van Buren JM. Complications of surgical procedures in the diagnosis and treatment of epilepsy. In: Engel Jr J, editor. Surgical treatment of the epilepsies. New York: Raven Press; 1987. p. 465–75.

    Google Scholar 

  143. Wong CH, Birkett J, Byth K, Dexter M, Somerville E, Gill D, Chaseling R, Fearnside M, Bleasel A: Risk factors for complications during intracranial electrode recording in presurgical evaluation of drug resistant partial epilepsy. Acta Neurochir (Wien). 2009;151:37–50.

    Google Scholar 

  144. Kovalev D, Spreer J, Honegger J, Zentner J, Schulze-Bonhage A, Huppertz HJ. Rapid and fully automated visualization of subdural electrodes in the presurgical evaluation of epilepsy patients. AJNR Am J Neuroradiol. 2005;26:1078–83.

    PubMed  PubMed Central  Google Scholar 

  145. Sebastiano F, Di Gennaro G, Esposito V, et al. A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy. Clin Neurophysiol. 2006;117(2):341–7.

    Article  CAS  PubMed  Google Scholar 

  146. Arnulfo G, Narizzano M, Cardinale F, et al. Automatic segmentation of deep intracerebral electrodes in computed tomography scans. BMC Bioinformatics. 2015; https://doi.org/10.1186/s12859-015-0511-6.

  147. Tandon N, Tong BA, Friedman ER, et al. Analysis of morbidity and outcomes associated with use of subdural grids vs. stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol. 2019; https://doi.org/10.1001/jamaneurol.2019.0098.

  148. Toth M, Papp KS, Gede N, et al. Surgical outcomes related to invasive EEG monitoring with subdural grids or depth electrodes in adults: a systematic review and meta-analysis. Eur J Epilepsy. 2019;70:12–9.

    Article  Google Scholar 

  149. Yan H, Katz JS, Anderson M, et al. Method of invasive monitoring in epilepsy surgery and seizure freedom and morbidity: a systematic review. Epilepsia. 2019:1–13. https://doi.org/10.1111/epi.16315.

  150. Dümpelmann M, Jacobs J, Kerber K, Schulze-Bonhage A. Automatic 80–250 Hz “ripple” high frequency oscillation detection in invasive subdural grid and strip recordings in epilepsy by a radial basis function neural network. Clin Neurophysiol. 2012;123:1721–31.

    Article  PubMed  Google Scholar 

  151. Ryvlin P, Cross H, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13:114–26

    Google Scholar 

  152. Sinha N, Dauwels J, Kaiser M, et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain. 2017;140(Pt 2):319–32.

    Article  PubMed  Google Scholar 

  153. Migliorelli C, Alonso JF, Romero S, et al. Automated detection of epileptic ripples in MEG using beamformer-based virtual sensors. J Neural Eng. 2017;14(4):46013.

    Article  Google Scholar 

  154. Geertsema EE, van’t Klooster MA, van Klink NEC, et al. Non-harmonicity in high-frequency components of the intra-operative corticogram to delineate epileptogenic tissue during surgery. Clin. Neurophysiology 2017; 128 (1): 153–164.

    Google Scholar 

  155. Holler Y, Kutil R, Klaffenbock L, et al. High-frequency oscillations in epilepsy and surgical outcome. A meta-analysis. Front Hum Neurosci. 2015;9:574.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kerber K, Levan P, Dumpelmann M, et al. High frequency oscillations mirror disease activity in patients with focal cortical dysplasia. Epilepsia. 2013;54:1428–36.

    Article  PubMed  Google Scholar 

  157. Dirodi M, Tamilia E, Grant PE, et al. Noninvasive localization of high-frequency oscillations in children with epilepsy: Validation against intracranial gold-standard. 978–1–5386-1311-5/19/$31.00; 2019.

    Google Scholar 

  158. Thomschewski A, Hincapié A-S, Frauscher B. Localization of the epileptogenic zone using high frequency oscillations. Front Neurol. 2019; https://doi.org/10.3389/fneur.2019.00094.

  159. Engel J, van Ness PC, Rasmussen TB, Ojemann LM. Outcome with respect to epileptic seizures. In: Engel J, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993. p. 615.

    Google Scholar 

  160. Wieser HG, Blume WT, Fish D, et al. ILAE Commission Report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001;42(2):282–6.

    CAS  PubMed  Google Scholar 

  161. Wieser HG. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy. Epilepsia. 2008;42:282–6. https://doi.org/10.1046/j.1528-1157.2001.35100.x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). Presurgical Evaluation. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_3

Download citation

Publish with us

Policies and ethics