Skip to main content

The Current Place of Epilepsy Surgery

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies

Abstract

Over the last decades, surgical options for the treatment of pharmacoresistant epilepsies have found increasing acceptance. According to a review of the US National Association of Epilepsy Centers, the number of surgical centers for epilepsy rose from 37 to 189 between 2003 and 2012. Comparing epilepsy surgical care in Europe before and after 2000, it has been concluded that the number of specialists involved in epilepsy surgery had increased, and that the gap between the least and the best provided areas had diminished. The current status of epilepsy surgery may be summarized by the following statements: (1) epilepsy surgery is still underused, particularly in the pediatric age, (2) epilepsy surgery is considered too late, (3) resective surgery decreases in adults and in temporal location, (4) there is a shift to pediatric epilepsy surgery and more complex extratemporal resections, and (5) there are promising developments in the epilepsy surgical program with respect to diagnostics, surgical treatment, and postoperative care. Overall, there is general consensus that all epilepsy patients who fail to gain seizure control with two appropriate AED schedules should get access to a full-service epilepsy center for assessment by a multidisciplinary team of epilepsy specialists, and that the right time for surgical intervention including in the first years of life has to be defined in pediatric epilepsy syndromes, in order to facilitate young children an undisturbed development at sensitive windows of brain maturation. Given the favorable results of epilepsy surgery and its cost-effectiveness, adequate resources should be made available to provide patients the chance to become seizure-free by a surgical intervention, and, particularly, to enable children the start into a life without the burden of epilepsy.

Our knowledge is for today, the truth is for eternity

Ramon Y Cajal

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baud MO, Perneger T, Rácz A, et al. European trends in epilepsy surgery. Neurology. 2018;91(2):e96–e106. https://doi.org/10.1212/WNL.0000000000005776.

    Article  PubMed  Google Scholar 

  2. Kaiboriboon K, Malkhachroum AM, Zrik A, et al. Epilepsy surgery in the United States: analysis of data from the National Association of epilepsy centers. Epilepsy Res. 2015;116:105–9.

    PubMed  Google Scholar 

  3. Zelano J, Klecki J, Christensen J, et al. The provision of epilepsy care across Europe 2017: a 17 years follow-up survey. Epilepsia. 2019;4(1):144–52. https://doi.org/10.1002/epi4.12306.

    Article  Google Scholar 

  4. Malmgren K, Flink R, Guekht AB, et al. ILAE Commission of European Affairs Subcommission on European guidelines 1998-2001: the provision of epilepsy care across Europe. Epilepsia. 2003;44:727–31.

    PubMed  Google Scholar 

  5. Dwivedi R, Ramanujam B, Chandra PS, et al. Surgery for drug-resistant epilepsy in children. N Engl J Med. 2017;377:1639–47.

    PubMed  Google Scholar 

  6. Engel J Jr, McDermott MP, Wiebe S, et al. Early surgical therapy for drugresistant temporal lobe epilepsy: a randomized trial. JAMA. 2012;307:922–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal lobe epilepsy. N Engl J Med. 2001;345:311–8.

    CAS  PubMed  Google Scholar 

  8. West S, Nevitt SJ, Cotton J, et al. Sugery for epilepsy (review). Cochrane Database Syst Rev. 2019;6 https://doi.org/10.1002/14651858.CD010541.pub3.

  9. Engel J Jr, Shewmon DA. Overview. Who should be considered a surgical candidate? In: Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993. p. 23–34.

    Google Scholar 

  10. Engel J Jr, Wiebe S, French J, Sperling M, Williamson P, Spencer D, Gumnit R, Zahn C, Westbrook E, Enos B. Quality standards Subcommittee of the American Academy of neurology, American Epilepsy Society, American Association of Neurological Surgeons. Neurology. 2003;60:538–47.

    PubMed  Google Scholar 

  11. Engel J, Van Ness PC, Rasmussen TB, Ojemann LM. Outcome with respect to epileptic seizures. In: Engel Jr J, editor. Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993. p. 609–21.

    Google Scholar 

  12. Lamberink HJ, Boshuisen K, van Rijen PC, Gosselaar PH, Braun KPJ. Dutch Collaborative Epilepsy Surgery Program (DCESP). Changing profiles of pediatric epilepsy surgery candidates over time: a nationwide single-center experience from 1990 to 2011. Epilepsia. 2015;56(5):717–25.

    PubMed  Google Scholar 

  13. Engel J. The current place of epilepsy surgery. Curr Opin Neurol. 2017;30 https://doi.org/10.1097/WCO.0000000000000528.

  14. Pestana Knight EM, Schiltz NK, Bakaki PM, Koroukian SM, Lhatoo SD, Kaiboriboon K. Increasing utilization of pediatric epilepsy surgery in the United States between 1997 and 2009. Epilepsia. 2015;56:375–81.

    PubMed  PubMed Central  Google Scholar 

  15. Jenny B, Smoll N, Hassani El Y, et al. Pediatric epilepsy surgery: could age be a predictor of outcomes? J Neurosurg Pediatr. 2016;18:235–41.

    PubMed  Google Scholar 

  16. Jonas R, Asarnow RF, LoPresti C, et al. Surgery for symptomatic infant- onset epileptic encephalopathy with and without infantile spasms. Neurology. 2005;64(4):746–50.

    CAS  PubMed  Google Scholar 

  17. Loddenkemper T, Holland KD, Stanford LD, et al. Developmental outcome after epilepsy surgery in infancy. Pediatrics. 2007;119:930e5.

    Google Scholar 

  18. Ramantani G, Kadish NE, Anastasopoulos C, et al. Frontal lobe epilepsy surgery in childhood and dolescence: predictors of long-term seizure freedom, overall cognitive and adaptive functioning. Neurosurgery. 2017; https://doi.org/10.1093/neuros/nyx340.

  19. Skirrow C, Cross JH, Cormack F, Harkness W, Vargha-Khadem F, Baldeweg T. Long- term intellectual outcome after temporal lobe surgery in childhood. Neurology. 2011;76:1330–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Englot DJ. A modern epilepsy surgery treatment algorithm: incorporating traditional and emerging technologies. Epilepsy Behav. 2018;80:68–74.

    PubMed  PubMed Central  Google Scholar 

  21. Engel J Jr. What can we do for people with drug-resistant epilepsy? The 2016 Wartenberg lecture. Neurology. 2016;87:2483–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Haneef Z, Stern J, Dewar S, Engel JJ. Referral pattern for epilepsy surgery after evidence-based recommendations: a retrospective study. Neurology. 2010;75(8):699–704.

    PubMed  PubMed Central  Google Scholar 

  23. Lhatoo SF, Solomon JK, McEvoy AW, et al. A prospective study of the requirement for and the provision of epilepsy surgery in the United Kingdom. Epilepsia. 2003;44(5):673–6.

    PubMed  Google Scholar 

  24. Rolston JD, Englot DJ, Knowlton RC, Chang EF. Rate and complications of adult epilepsy surgery in North America: analysis of multiple databases. Epilepsy Res. 2016;124:55–62.

    PubMed  PubMed Central  Google Scholar 

  25. Cross JH, Jayakar P, Nordli D, et al. International League against Epilepsy, Subcommission for Paediatric Epilepsy Surgery; Commissions of Neurosurgery and Paediatrics. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia. 2006;47(6):952–9.

    PubMed  Google Scholar 

  26. Berg AT, Mathern GW, Bronen RA, Fulbright RK, DiMario F, Testa FM, et al. Frequency, prognosis and surgical treatment of structural abnormalities seen with magnetic resonance imaging in childhood epilepsy. Brain J Neurol. 2009;132(Pt 10):2785–97.

    Google Scholar 

  27. Neligan A, Haliasos N, Pettorini B, Harkness WFJ, Solomon JK. A survey of adult and pediatric epilepsy surgery in the United Kingdom. Epilepsia. 2013;54(5):e62–5.

    PubMed  Google Scholar 

  28. Hauser WA. Status epilepticus: epidemiologic considerations. Neurology. 1990;40:9–13.

    CAS  PubMed  Google Scholar 

  29. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9.

    CAS  PubMed  Google Scholar 

  30. Pohlen MS, Jin J, Tobias RS, Maheshwari A. Pharmacoresistance with newer anti- epileptic drugs in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res. 2017;137:56–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cross JH, Jayakar P, Nordli D, et al. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the subcommission for pediatric epilepsy surgery. Epilepsia. 2006;47(6):952–9.

    PubMed  Google Scholar 

  32. Labiner DM, Bagic AI, Herman ST, Fountain NB, Walczak TS, Gumnit RJ, et al. Essential services, personnel, and facilities in specialized epilepsy centers—revised 2010 guidelines. Epilepsia. 2010;51:2322–33.

    PubMed  Google Scholar 

  33. Englot DJ, Ouyang D, Garcia PA, et al. Epilepsy surgery trends in the United States, 1990-2008. Neurology. 2012;78:1200–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sperling MR, Barshow S, Nei M, Asadi-Pooya AA. A reappraisal of mortality after epilepsy surgery. Neurology. 2016;86:1938–44.

    PubMed  Google Scholar 

  35. Dewar SR, Pieters HC. Perceptions of epilepsy surgery: a systematic review and an explanatory model of decision making. Epilepsy Behav. 2015;44:171–8.

    PubMed  Google Scholar 

  36. Jetté N, Sander JW, Keezer MR. Surgical treatment for epilepsy: the potential gap between evidence and practice. Lancet Neuro. 2016;15:982–94.

    Google Scholar 

  37. Vakharia VN, Duncan JS, Witt JA, et al. Getting the best outcomes from epilepsy surgery. Ann Neurol. 2018;83(4):676–90.

    PubMed  PubMed Central  Google Scholar 

  38. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia. 1993;34(3):453–68.

    Article  CAS  PubMed  Google Scholar 

  39. Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13:1114–26.

    Article  PubMed  Google Scholar 

  40. Harvey AS, Cross JH, Shinnar S, Mathern GW, ILAE Pediatric Epilepsy Surgery Survey Taskforce. Defining the spectrum of international practice in pediatric epilepsy Sur- gery patients. Epilepsia. 2008;49:146–55.

    PubMed  Google Scholar 

  41. Berg AT, Langfitt J, Shinnar S, et al. How long does it take for partial epilepsy to become intractable? Neurology. 2003;60:186–90.

    CAS  PubMed  Google Scholar 

  42. Choi H, Carlino R, Heiman G, et al. Evaluation of duration of epilepsy prior to temporal lobe epilepsy surgery during the past two decades. Epilepsy Res. 2009;86:224–7.

    PubMed  PubMed Central  Google Scholar 

  43. Bjellvi J, Olsson I, Malmgren K, et al. Epilepsy duration and seizure outcome in epilepsy surgery. Neurology. 2019;93:e159–66. https://doi.org/10.1212/WNL.0000000000007753.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cloppenborg T, May TW, Blümcke I, et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry. 2016;87:1322–9.

    PubMed  Google Scholar 

  45. Schiltz NK, Koroukian SM, Lhatoo SD, Kaiboriboon K. Temporal trends in pre-surgical evaluations and epilepsy surgery in the U.S. from 1998 to 2009. Epilepsy Res. 2013;103(2–3):270–8.

    PubMed  Google Scholar 

  46. Jehi L, Friedman D, Carlson C, et al. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia. 2015;56:1526–33.

    PubMed  PubMed Central  Google Scholar 

  47. Barba C, Specchio N, Guerrini R. Increasing volume and complexity of pediatric epilepsy surgery with stable seizure outcome between 2008 and 2014: a nationwide multicenter study. Epilepsy Behav. 2017;75:151–7.

    PubMed  Google Scholar 

  48. Ramantani G, Holthausen H. Epilepsy after cerebral infection: review of the literature and the potential for surgery. Epileptic Disord. 2017;19(2):117–36.

    PubMed  Google Scholar 

  49. Choy M, Dube CM, Ehrengruber M, et al. Inflammatory processes, febrile seizures, and subsequent epileptogenesis. Epilepsy Curr. 2014;14:15–22.

    PubMed  PubMed Central  Google Scholar 

  50. Dube CM, Ravizza T, Hamamura M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomark- ers. J Neurosci. 2010;30:7484–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Helmstaedter C, May TW, von Lehe M, et al. Temporal lobe surgery in Germany from 1988 to 2008: diverse trends in etiological subgroups. Eur J Neurol. 2014;21:827–34.

    CAS  PubMed  Google Scholar 

  52. Arzimanoglou A, Cross JH, Gaillard WD, Holthausen H, Jayakar P, Kahane P, Gaillard G. Pediatric epilepsy surgery. Paris: John Libbey Eurotext; 2016.

    Google Scholar 

  53. Engel J Jr. Evolution of concepts in epilepsy surgery. Epileptic Disord. 2019;21(5):391–409.

    PubMed  Google Scholar 

  54. Barba C, Cross JH, Braun K, Cossu M, et al. Trends in pediatric epilepsy surgery in Europe between 2008 and 2015: country-, center-, and age-specific variation. Epilepsia. 2020;61(2):216–27.

    PubMed  Google Scholar 

  55. Tomson T, Nashef L, Ryvlin P. Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 2008;7:1021–31.

    PubMed  Google Scholar 

  56. Jones MW, Andermann F. Temporal lobe epilepsy surgery: definition of candidacy. Can J Neurol Sci. 2000;27(Suppl. 1):S11–3. discussion S20-1

    PubMed  Google Scholar 

  57. Duncan JS. Selecting patients for epilepsy surgery: synthesis of data. Epilepsy Behav. 2011;20:230–2.

    PubMed  Google Scholar 

  58. Kwon C-S, Neal J, Telléz-Zenteno J, et al. Resective focal epilepsy surgery – has selection of candidates changed? A systematic review. Epilepsy Res. 2016;122:37–43.

    PubMed  Google Scholar 

  59. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA, Mathern G, Moshé SL, Perucca E, Wiebe S, French J. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51:1069–77.

    CAS  PubMed  Google Scholar 

  60. Conte F, Paesschen WV, Legros B, et al. The epilepsy surgery grading scale: validation in an independent population with drug-resistant focal epilepsy. Epilepsia. 2019; https://doi.org/10.1111/epi.16096.

  61. Engel J, Pitkänen A. Biomarkers for Epileptogenesis and its treatment. Neuropharmacology. 2019; https://doi.org/10.1016/j.neuropharm.2019.107735.

  62. Wellmer J, Quesada CM, Rothe L, Elger CE, Bien CG, Urbach H. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia. 2013;44:1977–87.

    Google Scholar 

  63. Bernasconi A, Cendes F, Theodore WH, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the international league against epilepsy neuroimaging task force. Epilepsia. 2019;60:1054–68.

    PubMed  Google Scholar 

  64. Hong S-J, Kim H, Schrader D, et al. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83(1):48–55.

    PubMed  PubMed Central  Google Scholar 

  65. Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(Pt 10):2844–54.

    PubMed  Google Scholar 

  66. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31(4):1487–505.

    PubMed  Google Scholar 

  67. Bauer PR, Reitsma JB, Houweling BM, et al. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta- analysis and systematic review. J Neurol Neurosurg Psychiatry. 2014;85(5):581–8.

    PubMed  Google Scholar 

  68. Nowell M, Vos SB, Sidhu M, et al. Meyer’s loop asymmetry and language lateralisation in epilepsy. J Neurol Neurosurg Psychiatry. 2016;87(8):836–42.

    PubMed  Google Scholar 

  69. Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Curr Opin Neurol. 2013;26:186–94.

    PubMed  PubMed Central  Google Scholar 

  70. Tavakol S, Royer J, Lowe AJ, et al. Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: from focal lesions to macroscale networks. Epilepsia. 2019;60:593–604.

    PubMed  PubMed Central  Google Scholar 

  71. Petroff OA, Duncan JS. Magnetic resonance spectroscopy. In: Engel Jr J, Pedley TA, editors. Epilepsy:AComprehensive textbook. 2nd ed. Lippincott Williams & Wilkins: Philadelphia; 2008. p. 975–88.

    Google Scholar 

  72. Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016;15:420–33.

    PubMed  PubMed Central  Google Scholar 

  73. Muhlhofer W, Tan YL, Mueller SG, Knowlton R. MRI-negative temporal lobe epilepsy – what do we know? Epilepsia. 2017;58:727–42.

    PubMed  Google Scholar 

  74. Ryvlin P, Rheims S. Predicting epilepsy surgery outcome. Curr Opin Neurol. 2016;29:182–8.

    CAS  PubMed  Google Scholar 

  75. Andrade-Valenca LP, Dubeau F, Mari F, Zelmann R, Gotman J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology. 2011;77(6):524–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tamilia E, Madsen JR, Grant PE, et al. Current and emerging potential of magnetoencephalography in the detection and localization of high-frequency oscillations in epilepsy. Front Neurol. 2017;8:14. https://doi.org/10.3389/fneur.2017.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Van Klink N, van Rosmalen F, Nenonen J, et al. Automatic detection and visualization of MEG ripple oscillations in epilepsy. Neuroimage Clin. 2017;15:689–701.

    PubMed  PubMed Central  Google Scholar 

  78. Haglund MM, Hochman D, Toga AW. Optical imaging of seizure activity. In: Engel Jr J, Pedley TA, editors. Epilepsy: a comprehensive textbook. 2nd ed. Lippincott-Raven: Philadelphia; 2008. p. 1025–30.

    Google Scholar 

  79. Valentin A, Hernando-Quintana N, Moles-Herbera J, et al. Depth versus subdural temporal electrodes revisited: impact on surgical outcome after resective surgery for epilepsy. Clin Neurophysiol. 2017;128:418–23.

    CAS  PubMed  Google Scholar 

  80. Yang M, Ma Y, Li W, et al. A retrospective analysis of stereoelectroencephalography and subdural electroencephalography for preoperative evaluation of intractable epilepsy. Stereotact Funct Neurosurg. 2017;95:13–20.

    PubMed  Google Scholar 

  81. Wagstyl K, Adler S, Pimpel B, et al. Planning stereoelectroencephalography using automated lesion detection: Retrospective feasibility study. Epilepsia. 2020; https://doi.org/10.1111/epi.16574.

  82. Bragin A, Engel J Jr, Wilson CL, et al. Hippocampal and entorhinal cortex high frequency oscillations (100-500 Hz) in kainic acid-treated rats with chronic seizures and human epileptic brain. Epilepsia. 1999;40:127–37.

    CAS  PubMed  Google Scholar 

  83. Frauscher B, Bartolomei F, Kobayashi K, et al. High-frequency oscillations: the state of clinical research. Epilepsia. 2017;58:1316–29.

    PubMed  PubMed Central  Google Scholar 

  84. Jiruska P, Alvarado-Rojas C, Schevon CA, et al. Update on the mechanisms and roles of high-frequency oscillations in seizures and epileptic disorders. Epilepsia. 2017;58:1330–9.

    PubMed  PubMed Central  Google Scholar 

  85. Zijmans M, Worrell GA, D€umpelmann M, et al. How to record highfrequency oscillations in epilepsy: a practical guideline. Epilepsia. 2017;58:1305–15.

    Google Scholar 

  86. Thomschewski A, Hincapié A-S, Frauscher B. Localization of the epileptogenic zone using high frequency oscillations. Front Neurol. 2019; https://doi.org/10.3389/fneur.2019.00094.

  87. Hammen T, Reisert M, Juschkat W, et al. Alterations of intracerebral connectivity in epilepsy patients with secondary bilateral synchrony. Epilepsy Res. 2020; https://doi.org/10.1016/j.eplepsyres.2020.106402.

  88. Bartolomei F, Lagarde S, Wendling F, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia. 2017;58:1131–47.

    PubMed  Google Scholar 

  89. Lopes MA, Richardson MP, Abela E, et al. An optimal strategy for epilepsy surgery: disruption of the rich-club? PLoS Comput Biol. 2017;13:e1005637.

    PubMed  PubMed Central  Google Scholar 

  90. Sinha N, Dauwels J, Kaiser M, et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain. 2017;140:319–32.

    PubMed  Google Scholar 

  91. González Otárula KA, von Ellenrieder N, Cuello-Oderiz C, et al. High-frequency oscillation networks and surgical outcome in adult focal epilepsy. Ann Neurol. 2019;85:485–94.

    PubMed  Google Scholar 

  92. He X, Doucet GE, Pustina D, et al. Presurgical thalamic “hubness” predicts surgical outcome in temporal lobe epilepsy. Neurology. 2017;88(24):2285–93.

    PubMed  Google Scholar 

  93. Gil F, Padilla N, Soria-Pastor S, et al. Beyond the epileptic focus: functional epileptic networks in focal epilepsy. Cerebral Cortex. 2019; https://doi.org/10.1093/cercor/bhz243.

  94. Kini LG, Bernabei JM, Mikhail F, et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain. 2019; https://doi.org/10.1093/brain/awz303.

  95. Stacey W, Kramer M, Gunnarsdottir K, et al. Emerging roles of network analysis for epilepsy. Epilepsy Res. 2019; https://doi.org/10.1016/j.eplepsyres.2019.106255.

  96. Foit N, Bernasconi A, Bernasconi N. Functional networks in epilepsy presurgical evaluation. Neurosurg Clin N Am. 2020; https://doi.org/10.1016/j.nec.2020.03.004.

  97. Nguyen DK. Topical issue: insular cortex epilepsy. J Clin Neurophysiol. 2017;34:300–39.

    Google Scholar 

  98. Ryvlin P, Montavont A, Kahane P. The impact of epilepsy surgery on mortality. Epileptic Disord. 2005;7(1):539–46.

    Google Scholar 

  99. Widjaja E, Li B, Schinkel CD, Ritchie LP, Weaver J, Snead OC, Rutka JT, Coyte PC. Cost-effectiveness of pediatric epilepsy surgery compared to medical treatment in children with intractable epilepsy. Epilepsy Res. 2011;94:61–8.

    PubMed  Google Scholar 

  100. Sheikh SR, Steinmetz MP, Kattan MW, et al. The cost-effectiveness of epilepsy surgery and surgical evaluation in the United States. Neurosurgery. 2019; https://doi.org/10.1093/neuros/nyz310_165.

  101. Geller EB, Skarpaas TL, Gross RE, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58:994–1004.

    PubMed  Google Scholar 

  102. Jobst BC, Kapur R, Barkley GL, et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia. 2017;58:1005–14.

    PubMed  Google Scholar 

  103. Papageorgiou PN, Deschner J, Papageorgiou SN. Effectiveness and adverse effects of deep brain stimulation: umbrella review of meta-analyses. J Neurol Surg A Cent Eur Neurosurg. 2017;78:180–90.

    PubMed  Google Scholar 

  104. Sprengers M, Vonck K, Carrette E, et al. Deep brain and cortical stimulation for epilepsy. Cochrane Database Syst Rev. 2017;7:CD008497.

    PubMed  Google Scholar 

  105. Cossu M, Cardinale F, Casaceli G, et al. Stereo-EEG-guided radiofrequency thermocoagulations. Epilepsia. 2017;58:66–72.

    PubMed  Google Scholar 

  106. Dimova P, de Palma L, Job-Chapron AS, et al. Radiofrequency thermocoagulation of the seizure-onset zone during stereoelectroencephalography. Epilepsia. 2017;58:381–92.

    PubMed  Google Scholar 

  107. Jermakowicz WJ, Kanner AM, Sur S, et al. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017;58:801–10.

    PubMed  PubMed Central  Google Scholar 

  108. Kang JY, Sperling MR. Epileptologist’s view: laser interstitial thermal ablation for treatment of temporal lobe epilepsy. Epilepsy Res. 2017; https://doi.org/10.1016/j.epilepsyres.2017.07.007.

  109. Wicks RT, Jermakowicz WJ, Jagid JR, et al. Laser interstitial thermal therapy for mesial temporal lobe epilepsy. Neurosurgery. 2016;79:S83–91.

    PubMed  Google Scholar 

  110. Wellmer J, Parpaley Y, Rampp S, Popkirov S, Kugel H, Aydin Ü, Wolters CH, von Lehe M, Voges J. Lesion guided stereotactic radiofrequency thermocoagulation for palliative, in selected cases curative epilepsy surgery. Epilepsy Res. 2016;121:39–46.

    PubMed  Google Scholar 

  111. Régis J, Rey M, Bartolomei F, et al. Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia. 2004;45:504–15.

    PubMed  Google Scholar 

  112. Régis J, Hayashi M, Eupierre LP, et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Acta Neurochir. 2004;91:33–50.

    Google Scholar 

  113. Barbaro NM, Quigg M, Ward MW, et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: the randomized, controlled ROSE trial. Epilepsia. 2018; https://doi.org/10.1111/epi.14045.

  114. Gross R. The latest on lasers: improving the outcome of MRg-LITT amygdalohippocampectomy. Epilepsy Curr. 2018;18(6):382–6.

    PubMed  PubMed Central  Google Scholar 

  115. Wu C, Jermakovicz WJ, Chakravorti S, et al. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients. Epilepsia. 2019;60(6):1171–83.

    PubMed  PubMed Central  Google Scholar 

  116. Krishna V, Sammartino F, Cosgrove R, et al. Predictors of outcomes after focused ultrasound thalamotomy. Neurosurgery. 2019; https://doi.org/10.1093/neuros/nyz417.

  117. Camporeze B, Manica BA, Bonafé GA, et al. Optogenetics: the new molecular approach to control functions of neural cells in epilepsy, depression and tumors of the central nervous system. Am J Cancer Res. 2018;8(10):1900–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hartshorn A, Jobst B. Responsive brain stimulation in epilepsy. Ther Adv Chronic Dis. 2018;9(7):135–42.

    PubMed  PubMed Central  Google Scholar 

  119. Boon P, Vonck K, van Rijckevorsel K, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015;32:52–61.

    PubMed  Google Scholar 

  120. Elger CE, Mormann F. Seizure prediction and documentation–two important problems. Lancet Neurol. 2013;12:531–2.

    PubMed  Google Scholar 

  121. Schulze-Bonhage A. Long-term outcome in neurostimulation of epilepsy. Epilepsy Behav. 2019;91:25–9.

    PubMed  Google Scholar 

  122. Usman SM, Khalid S, Akhtar R, et al. Using scalp EEG and intracranial EEG signals for predicting epileptic seizures: review of available methodologies. Europ J Epilep. 2019;71:258–69.

    Google Scholar 

  123. Altenmüller D-M, Hebel JM, Deniz C, et al. Electrocorticographic and neurochemical findings after local cortical valproate application in patients with pharmacoresistant focal epilepsy. Epilepsia. 2020; https://doi.org/10.1111/epi.16523.

  124. Sisterson ND, Wozny TA, Kokkinos V, et al. Closed-loop brain stimulation for drug-resistant epilepsy: towards an evidence-based approach to personalized medicine. Neurotherapeutics. 2018; https://doi.org/10.1007/s13311-018-00682-4.

  125. Engel J Jr, McDermott MP, Wiebe S, et al. Design considerations for a multicenter randomized controlled trial of early surgery for mesial temporal lobe epilepsy. Epilepsia. 2010;51(10):1978–86.

    PubMed  PubMed Central  Google Scholar 

  126. Sperling MR, Gross RE, Alvarez GE, et al. Stereotactic laser ablation for mesial temporal lobe epilepsy: A prospective, multicenter, single‐arm study. Epilepsia. 2020; https://doi.org/10.1111/epi.16529.

  127. Mehdizadeh A, Barzegar M, Negargar S, et al. The current and emerging therapeutic approaches in drug-resistant epilepsy management. Acta Neurol Belgica. 2019; https://doi.org/10.1007/s13760-019-01120-8.

  128. Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, Russek SJ, Brooks-Kayal AR. Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci. 2006;26(44):11342–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mollanoori H, Teimourian S. Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnol Lett. 2018;40:907–14.

    CAS  PubMed  Google Scholar 

  130. Rao G, Mashkouri S, Aum D, Marcet P, Borlongan CV. Contemplating stem cell therapy for epilepsy-induced neuropsychiatric symptoms. Neuropsychiatr Dis Treat. 2017;13:585–96.

    PubMed  PubMed Central  Google Scholar 

  131. Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: opportunities and challenges for clinical application. Dev Dyn. 2018;247(1):94–110.

    CAS  PubMed  Google Scholar 

  132. Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res. 2018;146:9–16.

    CAS  PubMed  Google Scholar 

  133. Bell GS, de Tisi J, Gonzalez-Fraile JC, et al. Factors affecting seizure outcome after epilepsy surgery; an observational series. J Neurol Neurosurg Psychiatry. 2017;88(11):933–40.

    PubMed  Google Scholar 

  134. Ramos-Perdigués S, Baillés E, Mané A, et al. A prospective study contrasting the psychiatric outcome in drug-resistant epilepsy between patients who underwent surgery and a control group. Epilepsia. 2016;57:1680–90.

    PubMed  Google Scholar 

  135. Blümcke I, Spreafico R, Haaker G, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377:1648–56.

    PubMed  Google Scholar 

  136. Schurr J, Coras R, Rössler K, et al. Mild malformation of cortical develop ment with oligodendroglial hyperplasia in frontal lobe epilepsy: a new clinico-pathological entity. Brain Pathol. 2017;27:26–35.

    CAS  PubMed  Google Scholar 

  137. Hedley-Whyte ET, Goldman JE, Nedergaard M. Hyaline protoplasmic astrocytopathy of neocortex. J Pathol Exp Neurol. 2009;68(2):136–47.

    Google Scholar 

  138. Thorbecke R, May TW, Koch-Stoecker S, Ebner A, Bien CG, Specht U. Effects of an inpatient rehabilitation program after temporal lobe epilepsy surgery and other factors on employment 2 years after epilepsy surgery. Epilepsia. 2014;55:725–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). The Current Place of Epilepsy Surgery. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_17

Download citation

Publish with us

Policies and ethics