Skip to main content

Non-resective Epilepsy Surgery

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies
  • 557 Accesses

Abstract

Non-resective surgical strategies provide an alternative for drug-resistant patients not amenable to resective surgery due to poorly localized seizure foci, multiple foci, or epileptogenic zones co-localizing with eloquent areas carrying high risks for a resective procedure. They will not replace resective surgery, but rather complement the spectrum of surgical options. Palliative approaches comprising disconnective procedures (corpus callosotomy, CC; multiple subpial transections, MST) and neurostimulation (vagal nerve stimulation, VNS; deep brain stimulation, DBS; responsive neurostimulation, RNS) aim at reducing frequency and severity of most disabling seizures. The goal of curative non-resective surgery including ablative procedures (radiofrequency thermocoagulation, RFTC; laser-induced thermotherapy, LITT) and stereotactic radiosurgery (SRS) is to achieve complete seizure freedom as with resection. CC has been shown to reduce or abolish severe tonic or atonic drop attacks in around 90% of patients. As a stand-alone therapy, results of MST are modest with responder rates (defined as ≥50% decrease in seizure frequency) between 40% and 50%, and seizure-free outcome in 10–15% of patients. More favorable results with seizure control between 40% and 60% and responder rates between 80% and 90% can be achieved when MST are combined with resection. Neurostimulation procedures provide responder rates between 50% and 70%. Long-term assessment demonstrates continuously improving efficacy over many years suggesting a disease-modifying neuromodulation effect. With curative procedures, seizure-free outcome is achieved in 30–60% of patients. Curative stereotactic approaches can be expected to become first-line treatment options for selected patients with circumscribed lesions such as hypothalamic hamartomas, periventricular nodular heterotopias, and deep-seated focal cortical dysplasias. In addition, LITT may be considered as a minimally invasive alternative to resective surgery for mesiotemporal lobe epilepsies.

If you want new ideas, read old books

I. Pavlov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang EF, Englot DJ, Vadera S. Minimally invasive surgical approaches for temporal lobe epilepsy. Epilepsy Behav. 2015;47:24–33. https://doi.org/10.1016/j.yebeh.2015.04.033.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Englot DJ, Chang EF. Rates and predictors of seizure freedom in resective epilepsy surgery: an update. Neurosurg Rev. 2014;37:389–404; discussion 404–5. https://doi.org/10.1007/s10143-014-0527-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Englot DJ, Birk H, Chang EF. Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurg Rev. 2016;40:181–92.

    PubMed  PubMed Central  Google Scholar 

  4. Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery. 2016;79(3):345–53. https://doi.org/10.1227/NEU.0000000000001165.

    Article  PubMed  Google Scholar 

  5. Englot DJ, Konrad PE, Morgan VL. Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia. 2016;57:1546–57.

    PubMed  PubMed Central  Google Scholar 

  6. Dandy WE. Operative experiences in cases of pineal tumors. Arch Surg. 1936;33:19–46.

    Google Scholar 

  7. Van Wagenen WP, Herren RY. Surgical division of commisural pathways in the corpus callosum: relation to spread of an epileptic attack. Arch Neurol Psychiatry. 1940;44:740–59.

    Google Scholar 

  8. Akelaitis AJE. A study of gnosis/praxis and language following section of the corpus callosum and anterior commissure. J Neurosurg. 1944;1:94–102.

    Google Scholar 

  9. Goldstein MN, Joynt RJ, Hartley RB. The long-term effects of callosal sectioning. Ann Neurol. 1975;32:52–3.

    CAS  Google Scholar 

  10. Sperry RW. Cerebral organization and behavior. Science. 1961;133:1749–57.

    CAS  PubMed  Google Scholar 

  11. Blume WT. Corpus callosum section for seizure control: rational and review of experimental and clinical data. Cleve Clin Q. 1984;51:319–22.

    CAS  PubMed  Google Scholar 

  12. Blume WT. Corrpus callosotomy: a critical review. In: Tuxhorn I, Holthausen H, Boenigk H, editors. Paediatric epilepsy syndromes and their surgical treatment. London: John Libbey; 1997. p. 815–29.

    Google Scholar 

  13. Bancaud J, Talairach J, Bonis A, Schaub D, Szikla G, Morel P, Bordas-Ferer M. La stereo-encephalographie dans lépilepsie. Paris: Masson; 1965.

    Google Scholar 

  14. Goldring S. The role of prefrontal cortex in grand mal convulsion. Arch Neurol. 1972;26:109–19.

    CAS  PubMed  Google Scholar 

  15. Collins RC, Kennedy C, Sokoloff L, Plum F. Metabolic anatomy of focal motor seizures. Arch Neurol. 1976;33:536–42.

    CAS  PubMed  Google Scholar 

  16. Engel J, Wolfson L, Brown L. Anatomical correlates of electrical and behavioral events related to amygdaloid kindling. Ann Neurol. 1978;3:538–44.

    PubMed  Google Scholar 

  17. Fischer RS, Prince DA. Spike-wave rhythms in cat cortex induced by parenteral penicillin. Electroencephalographic features. Electroencephalogr Clin Neurophysiol. 1977;42:608–24.

    Google Scholar 

  18. Gloor P, Avoli M, Kostopoulos G. Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharge. In: Avoli M, Gloor P, Kostopoulos G, Naquet R, editors. Generalized epilepsy, neurobiological approaches. Boston, MA: Birkhauser; 1990. p. 190–212.

    Google Scholar 

  19. Schwarzkroin PA, Mutani R, Prince DA. Orthodromic and antidromic effects of a cortical epileptoform focus on ventro-lateral nucleus of the cat. J Neurophysiol. 1975;38:795–811.

    Google Scholar 

  20. Aicardi J, Chevri JJ. Myoclonic epilepsies of childhood. Neuropaediatrie. 1971;3:177–90.

    CAS  Google Scholar 

  21. Blume WT, David RB, Gomez MR. Generalized sharp and slow wave complexes. Associated clinical features and long-term follow-up. Brain. 1973;96:289–306.

    CAS  PubMed  Google Scholar 

  22. Gastaut H, Roger J, Soulayrol CA, Tassinari CA, Dravet C. Childhood epileptic encephalopathy with diffuse slow spike-waves (otherwise known as petit mal variant) or Lennox syndrome. Epilepsia. 1966;7:139–79.

    Google Scholar 

  23. Gloor P, Quesney LF, Zumstein H. Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. Topical application of penicillin to the cerebral cortex and to subcortical structures. Electroencephalogr Clin Neurophysiol. 1977;43:73–94.

    Google Scholar 

  24. Markand ON. Slow spike-wave activity in EEG and associated clinical features: often called Lennox or Lennox-Gastaut syndrome. Neurology. 1977;27:746–57.

    CAS  PubMed  Google Scholar 

  25. Curtis HJ, Bard P. Intercortical connexions of the corpus callosum as indicated by evoked potentials. Am J Physiol. 1939;126:473.

    Google Scholar 

  26. Erickson TC. Spread of the epileptic discharge. An experimental study of the afterdischarge induced by electrical stimulation of cerebral cortex. Arch Neurol Psychiat. 1940;43:429–5.

    Google Scholar 

  27. Kopeleff N, Kennard MA, Pacella BL, Kopeleff LM, Chusid JG. Section of corpus callosum in experimental epilepsy in the monkey. Arch Neurol Psychiatry. 1950;63:719–27.

    Google Scholar 

  28. Marcus EM, Watson CW. Symmetrical epileptogenic foci in monkey cerebral cortex: mechanisms of interactions and regional variations in capacity for synchronous discharges. Arch Neurol. 1968;19:99–116.

    CAS  PubMed  Google Scholar 

  29. Musgrave J, Gloor P. The role of corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy. Epilepsia. 1980;21:369–78.

    CAS  PubMed  Google Scholar 

  30. Crowell RM, Marsan C. Topographical distribution and patterns of unit activity during electrically induced after-discharge. Electroencephalogr Clin Neurophysiol. 1972;31:59–73.

    Google Scholar 

  31. Schwarzkroin PA, Futamach KJ, Noebbels IL, Prince DA. Transcallosal effects of a cortical epileptiform focus. Brain Res. 1975;99:59–68.

    Google Scholar 

  32. Spencer SS, Spencer DD, Glaser GH. More intensive focal seizure types after callosal section: the role of inhibition. Ann Neurol. 1984;16:686–93.

    CAS  PubMed  Google Scholar 

  33. Spiegel E. The central mechanism of generalized epileptic fits. Am J Psychiatry. 1931;88:595–609.

    Google Scholar 

  34. Spencer SS, Spencer DD, Sass KJ, Novelly RA, Williamson PD, Mattson RH. Partial vs. total callosotomy for epilepsy. Adv Epileptol. 1987;16:323–5.

    Google Scholar 

  35. Spencer SS, Gates JR, Reeves AG, Spencer DD, Maxwell RE, Roberts D. Corpus callosum section. In: Engel J, editor. Surgical treatment of the epilepsies. New York: Raven Press; 1987. p. 425–44.

    Google Scholar 

  36. Kusske JA, Rush JL. Corpus callosum and propagation of afterdischarge to contralateral cortex and thalamus. Neurology. 1978;28:905–12.

    CAS  PubMed  Google Scholar 

  37. Ottino CA, Meglio M, Rossi GF, Tercero E. An experimental study of the structure mediating bilateral synchrony of epileptic discharges of cortical origin. Epilepsia. 1971;12:299–311.

    CAS  PubMed  Google Scholar 

  38. Stavkry GW. Supersensitivity following lesions of the nervous system. Toronto: University of Toronto Press; 1961. p. 33–8.

    Google Scholar 

  39. Wada JA, Komai S. Effect of anterior two-thirds callosal bisection upon bisymmetrical and bisynchronous generalized convulsions kindled from amygdala in epileptic baboon. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum Press; 1985. p. 75–97.

    Google Scholar 

  40. Bogen J. Cerebral commissurotomy. A second case report. JAMA. 1965;194:1328–9.

    CAS  PubMed  Google Scholar 

  41. Bogen J, Vogel PJ. Cerebral commisurotomy in man: preliminary case report. Bull Los Angeles Neurol Soc. 1962;27:139–72.

    Google Scholar 

  42. Bogen JE, Sperry RW, Vogel PJ. Commisural section and propagation of seizures. In: Jasper HH, Ward AA, Pope A, editors. Basic mechanisms or the epilepsies. Boston, MA: Little Brown; 1969. p. 439–40.

    Google Scholar 

  43. Wilson DH, Culver C, Waddington M, Gazzaniga M. Disconnection of the cerebral hemisphere. An alternative to hemispherectomy for the control of intractable seizures. Neurology. 1975;25:1149–53.

    CAS  PubMed  Google Scholar 

  44. Wilson DH, Reeves A, Gazzaniga M, Culver C. Cerebral commissurotomy for control of intractable seizures. Neurology. 1977;27:708–15.

    CAS  PubMed  Google Scholar 

  45. Wilson DH, Reeves A, Gazzaniga M. Division of the corpus callosum for uncontrollable epilepsy. Neurology. 1978;28:649–53.

    CAS  PubMed  Google Scholar 

  46. Wilson DH, Reeves A, Gazzaniga M. “Central” commissurotomy for intractable generalized epilepsy: series two. Neurology. 1982;32:687–97.

    CAS  PubMed  Google Scholar 

  47. Luessenhop AJ, dela Cruz TC, Fenichel GM. Surgical disconnection of the cerebral hemispheres for intractable seizures: results in infancy and childhood. JAMA. 1970;213:1630–6.

    CAS  PubMed  Google Scholar 

  48. Reeves AG. Epilepsy and the corpus callosum. New York: Plenum Press; 1985.

    Google Scholar 

  49. Reeves AG, Roberts DW. Epilepsy and the corpus callosum. 2nd ed. New York: Plenum Press; 1995.

    Google Scholar 

  50. Gates JR. Corpus callosum candidacy. In: Lüders H, editor. Epilepsy surgery. New York: Raven Press; 1992. p. 119–25.

    Google Scholar 

  51. Purves SJ, Wada JA, Woodhurst WB. Corpus callosum section for complex partial seizures. In: Reeves AG, Roberts DW, editors. Epilepsy and the corpus callosum. 2nd ed. New York: Plenum Press; 1995. p. 175–82.

    Google Scholar 

  52. Engel J. Outcome with respect to epileptic seizures. In: Engel J, editor. Surgical treatment of the epilepsies. New York: Raven Press; 1987. p. 553–71.

    Google Scholar 

  53. Apuzzo MLJ. Surgery of the third ventricle. Baltimore, MD: Williams & Wilkins; 1987.

    Google Scholar 

  54. Apuzzo MLJ, Chikovani OK, Gott PS. Transcallosal, interfornical approaches for lesions affecting the third ventricle: surgical considerations and consequences. Neurosurgery. 1982;10:547–54.

    CAS  PubMed  Google Scholar 

  55. Bogen JE. Some historical aspects of callosotomy for epilepsy. In: Reeves G, Roberts DW, editors. Epilepsy and the corpus callosum. 2nd ed. New York: Plenum Press; 1995. p. 107–21.

    Google Scholar 

  56. Reutens DC, Bye AM, Hopkins IL, Danks A, Sommerville E, Walsh J, Bleasel A, Ouvrier R, MacKenzie RA, Manson JL, Bladin PF, Berkovic SF. Corpus callosotomy for intractable epilepsy: seizure outcome and prognostic factors. Epilepsia. 1993;34:904–9.

    CAS  PubMed  Google Scholar 

  57. Wyler AR. Corpus callosotomy. In: Wyllie E, editor. The treatment of epilepsy: principles and practice. 2nd ed. Baltimore, MD: Williams & Wilkins; 1997. p. 1097–102.

    Google Scholar 

  58. Fuiks KW, Wyler AR, Hermann BP, Sorres G. Seizure outcome from anterior and complete corpus callosotomy. J Neurosurg. 1991;74:573–8.

    CAS  PubMed  Google Scholar 

  59. Gates JR, Maxwell R, Leppik IE, Gumnit RJ. Electroencephalographic and clinical effects of total corpus callosotomy. In: Reeves AG, editor. Epilepsia and the corpus callosum. New York: Plenum Press; 1985. p. 315–28.

    Google Scholar 

  60. Geoffroy G, Lassonde M, Delisle F, Decarie M. Corpus callosotomy for control of intractable epilepsy in children. Neurology. 1983;33:891–7.

    CAS  PubMed  Google Scholar 

  61. Girvin JP. Operative techniques in epilepsy. Cham: Springer; 2015.

    Google Scholar 

  62. Kim DS, Yang KH, Kim TG, Chang JH, Chang JW, Choi JU, Lee BI. The surgical effect of callosotomy in the treatment of intractable seizures. Yonsei Med J. 2004;45:233–40.

    PubMed  Google Scholar 

  63. Liang S, Li A, Jiang H, Meng X, Zhao M, Zhang J, Sun Y. Anterior corpus callosotomy in patients with intractable generaliszed epilepsy and mental retardation. Stereotact Funct Neurosurg. 2010;88:246–52.

    PubMed  Google Scholar 

  64. Purves SJ, Wada JA, Woodhurst WB, Moyes PD, Strauss E, Kosaka B, Li D. Results of anterior corpus callosum section in 24 patients with medically intractable seizures. Neurology. 1988;38:1194–201.

    CAS  PubMed  Google Scholar 

  65. Spencer SS, Spencer DD, Williamson PD, Sass K, Novelly RA, Mattson RH. Corpus callosotomy for epilepsy. I. Seizure effects. Neurology. 1988;38:19–24.

    CAS  PubMed  Google Scholar 

  66. Roberts DW, Reeves AG, Nordgren RE. The role of posterior callosotomy in patients with suboptimal response to anterior callosotomy. In: Reeves AG, Roberts DW, editors. Epilepsy and the corpus callosum. 2nd ed. New York: Plenum Press; 1995. p. 183–90.

    Google Scholar 

  67. Madsen JR, Carmant L, Holmes GL, Black PM. Corpus callosotomy in children. Neurosurg Clin N Am. 1995;6(3):541–8.

    CAS  PubMed  Google Scholar 

  68. Oguni H, Olivier A, Andermann F, Comair J. Anterior callosotomy in the treatment of medically intractable epilepsies: a study of 43 patients with a mean follow-up of 39 months. Ann Neurol. 1991;30(3):357–64.

    CAS  PubMed  Google Scholar 

  69. Williamson PD. Corpus callosum section for intractable epilepsy. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum Press; 1985. p. 243–57.

    Google Scholar 

  70. Cukiert A, Burattini JA, Mariani PP, Câmara RB, Seda L, Baldauf CM, Argentoni M, Baise-Zung C, Forster CR, Mello VA. Extended, one-stage callosal section for treatment of refractory secondarily generalized epilepsy in patients with Lennox-Gastaut and Lennox-like syndromes. Epilepsia. 2006;47:371–4.

    PubMed  Google Scholar 

  71. Cukiert A, Burattini JA, Mariani PP, Cukiert CM, Sárgentoni-Baldochi M, Baise-Zung C, Fortser CR, Mello VA. Outcome after extended callosal section in patients with primary idiopathic generalized epilepsy. Epilepsia. 2009;50(6):1377–80.

    PubMed  Google Scholar 

  72. Gates JR, Leppik IE, Yap J, Gumnit RJ. Corpus callosotomy: clinical end electroencephalographic effects. Epilepsia. 1984;25:308–16.

    CAS  PubMed  Google Scholar 

  73. Gates JR, Mireles R, Maxwell R, Sharbrough F, Forbes G. Nuclear magnetic resonance scan documentation of the extent of callosotomy. Epilepsia. 1984;25:650–1.

    Google Scholar 

  74. Hanson RR, Risinger M, Maxwell R. The ictal EEG as a predictive factor for outcome following corpus callosum section in adults. Epilepsy Res. 2002;49:89–97.

    PubMed  Google Scholar 

  75. Maehara T, Shimizu H. Surgical outcome of corpus callosotomy in patients with drop attacks. Epilepsia. 2001;42:67–71.

    CAS  PubMed  Google Scholar 

  76. Maehara T, Shimizu H, Oda M, Arai N. Surgical treatment of children with intractable epilepsy. Neurol Med Chir (Tokyo). 1996;36:306–9.

    Google Scholar 

  77. Mamelak AN, Barbaro NM, Walker JA, Laxer KD. Corpus callosotomy a quantitative study of extent of resection, seizure control, and neuropsychological outcome. J Neurosurg. 1993;79:688–95.

    CAS  PubMed  Google Scholar 

  78. Sunaga S, Shimizu H, Sugano H. Long-term follow-up of seizure outcomes after corpus callosotomy. Seizure. 2009;18:124–8.

    PubMed  Google Scholar 

  79. Tanriverdi T, Olivier A, Poulin N, Andermann F, Dubeau F. Long-term seizure outcome after corpus callosotomy: a retrospective analysis of 95 patients. J Neurosurg. 2009;110:332–42.

    PubMed  Google Scholar 

  80. Jenssen S, Sperling MR, Tracy JI, Nei M, Joyce L, David G, O’Connor M. Corpus callosotomy in refractory idiopathic generalized epilepsy. Seizure. 2006;15:621–9.

    PubMed  Google Scholar 

  81. Kwan SY, Lin JH, Wong TT, Chang KP, Yiu CH. A comparison of seizure outcome after callosotomy in patients with Lennox-Gastaut syndrome and positive or negative history of West syndrome. Seizure. 2006;15:552–7.

    PubMed  Google Scholar 

  82. Pinard JM, Delalande O, Chiron C, Soufflet C, Plouin P, Kim Y, Dulac O. Callosotomy for epilepsy after West syndrome. Epilepsia. 1999;40:1727–34.

    CAS  PubMed  Google Scholar 

  83. Wheless JW. Managing severe epilepsy syndromes of early childhood. J Child Neurol. 2009;24:24S–32S.

    PubMed  Google Scholar 

  84. Gates JR, Rosenfeld WE, Maxwell RE. Response of multiple seizure types to corpus callosum section. Epilepsia. 1987;28:28–34.

    CAS  PubMed  Google Scholar 

  85. Gates JR, Rosenfield WE, Maxwell RE, et al. Response of multiple seizure types to corpus callosum section. Epilepsia. 1987;28:28–38.

    CAS  PubMed  Google Scholar 

  86. Sass KJ, Novelly RA, Spencer DD, Spencer SS. Postcallosotomy language impairments in patients with crossed cerebral dominance. J Neurosurg. 1990;72:85–90.

    CAS  PubMed  Google Scholar 

  87. Englot DJ. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy Behav. 2018;80:68–74.

    PubMed  PubMed Central  Google Scholar 

  88. Maxwell RE, Gates JR, Gumnit RJ. Corpus callosotomy at the University of Minnesota. In: Engel Jr J, editor. Surgical treatment of epilepsies. New York: Raven Press; 1986. p. 659–66.

    Google Scholar 

  89. Risse GL. Interhemispheric transfer in patients with incomplete section of the corpus callosum. Arch Neurol. 1989;46:437–43.

    CAS  PubMed  Google Scholar 

  90. Roberts DW, Rayport M, Maxwell RE, Olivier A, Marino R. Corpus callosotomy. In: Engel J, editor. Surgical treatment of the epilepsies. New York: Raven Press; 1993. p. 519–26.

    Google Scholar 

  91. Villemure JG, Vernet O, Delalande O. Hemispheric disconnection: callsosotomy and hemispherectomy. Adv Tech Stand Neurosurg. 2000;26:25–78.

    CAS  PubMed  Google Scholar 

  92. Yasargil MG. Microneurosurgery. Stuttgart, NY: Thieme; 1994.

    Google Scholar 

  93. Lang J, Ederer M. Über Form und Größe des Corpus Callosum und des Septum Pellucidum. Morph Jb (Leipzig). 1980;126:949–58.

    CAS  Google Scholar 

  94. Zentner J. Surgical aspects of corpus callosum section. In: Tuxhorn I, Holthausen H, Boenigk H, editors. Paediatric epilepsy syndromes and their surgical treatment. London: John Libbey; 1997. p. 830–49.

    Google Scholar 

  95. Seeger W, Zentner J. Neuronaviagation and neuroanatomy. Wien: Springer; 2002. p. 172–3.

    Google Scholar 

  96. Wyler AR. Corpus callosotomy in the treatment of epilepsy. Contemp Neurosurg. 1990;12:1–5.

    Google Scholar 

  97. Sood S, Marupudi NI, Asano E, Haridas A, Ham SD. Endoscopic corpus callosotomy and hemispherotomy. J Neurosurg Pediatr. 2015;16(6):681–6.

    PubMed  Google Scholar 

  98. Luat AF, Asano E, Kumar A, et al. Corpus callosotomy for intractable epilepsy revisited: the Children’s Hospital of Michigan Series. J Child Neurol. 2017;32(7):624–9.

    PubMed  PubMed Central  Google Scholar 

  99. Smyth MD, Vellimana AK, Asano E, et al. Corpus callosotomy—open and endoscopic surgical techniques. Epilepsia. 2017;58:73–9.

    PubMed  Google Scholar 

  100. Avila JO, Radvany J, Huck FR, Pires de Camargo CH, Marino R, Ragazzo PC, Riva D. Anterior callosotomy as a substitute for hemispherectomy. Acta Neurochir. 1980;30:137–43.

    CAS  Google Scholar 

  101. Huck FR, Radvany J, Avila JO, Pires de Camargo CH, Marino R, Ragazzo PC, Riva D, Arlant P. Anterior callosotomy in epileptics with multiform seizures and bilateral synchronous spike and wave EEG pattern. Acta Neurochir. 1980;30:127–35.

    CAS  Google Scholar 

  102. Marino R, Ragazzo PC. Selection criteria and results of selective partial callosotomy. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum Press; 1985. p. 281–301.

    Google Scholar 

  103. Marino R, Radvany J, Huck F, de Camargo CHP, Gronich G. Selective EEG-guided microsurgical callosotomy for refractory generalized epilepsy. Surg Neurol. 1990;34:219–28.

    PubMed  Google Scholar 

  104. Widjaja E, Zarei Mahmoodabadi S, Otsubo H, Snead OC, Holowka S, Bells S, Raybaud C. Subcortical alterations in tissue microstructure adjacent to focal cortical dysplasia: detection at diffusion-tensor MR imaging by using magnetoencephalographic dipole cluster localization. Radiology. 2009;251:206–15.

    PubMed  Google Scholar 

  105. Raffelt D, Tournier JD, Rose S, et al. Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage. 2012;59(4):3976–94.

    PubMed  Google Scholar 

  106. Bodaghabadi M, Bitaraf MA, Aran S, Alikhani M, Ashrafian H, Zahiri A, Alahverdi M. Corpus callosotomy with gamma knife radiosurgery for a case of intractable generalised epilepsy. Epileptic Disord. 2011;13:202–8.

    PubMed  Google Scholar 

  107. Eder HG, Feichtinger M, Pieper T, Kurschel S, Schroettener O. Gamma knife radiosurgery for callosotomy in children with drug-resistant epilepsy. Childs Nerv Syst. 2006;22:1012–7.

    PubMed  Google Scholar 

  108. Feichtinger M, Schröttner O, Eder H, Holthausen H, Pieper T, Unger F, Holl A, Gruber L, Körner E, Trinka E, Fazekas F, Ott E. Efficacy and safety of radiosurgical callosotomy: a retrospective analysis. Epilepsia. 2006;47:1184–91.

    PubMed  Google Scholar 

  109. Pendl G, Eder HG, Schroettner O, Leber KA. Corpus callosotomy with radiosurgery. Neurosurgery. 1999;45(2):303–7.

    CAS  PubMed  Google Scholar 

  110. Smyth MD, Klein EE, Dodson WE, Mansur DB. Radiosurgical posterior corpus callosotomy in a child with Lennox-Gastaut syndrome. Case report. J Neurosurg. 2007;106(4 Suppl):312–5.

    PubMed  Google Scholar 

  111. McGonigal A, Sahgal A, De Salles A, et al. Radiosurgery for epilepsy: systematic review and International Stereotactic Radiosurgery Society (ISRS) practice guideline. Epilepsy Res. 2017;137:123–31.

    PubMed  Google Scholar 

  112. Moreno-Jimenez S, San-Juan D, Larraga-Gutierrez JM, Celis MA, Alonso-Vanegas MA, Anschel DJ. Diffusion tensor imaging in radiosurgical callosotomy. Seizure. 2012;21:473–7.

    PubMed  Google Scholar 

  113. Marino R, Gronich G. Corpus callosum stimulation and stereotactic callosotomy in the management of refractory generalized seizures. Arq Neuro-Psiquiat (Sao Paulo). 1989;47:320–5.

    Google Scholar 

  114. Marino R, Cukiert A, Gronich G. Open and stereotactic segmental callosotomy: effects on seizure frequency. In: Reeves AG, Roberts DW, editors. Epilepsy and the corpus callosum. 2nd ed. New York: Plenum Press; 1995. p. 209–15.

    Google Scholar 

  115. Ball T, Sharma M, White A, et al. Anterior corpus callosotomy using laser interstitial thermal therapy for refractory epilepsy. Stereotact Funct Neurosurg. 2019; https://doi.org/10.1159/000495414.

  116. Ho AL, Miller KJ, Cartmell S, Inoyama K, Fisher RS, Halpern CH. Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep. 2016;5:23–6.

    PubMed  PubMed Central  Google Scholar 

  117. Karsy M, Patel DM, Halvorson K, Mortimer V, Bollo RJ. Anterior two-thirds corpus callosotomy via stereotactic laser ablation. Neurosurg Focus. 2018;44(Video Suppl 2):V2.

    PubMed  Google Scholar 

  118. Pruitt R, Gamble A, Black K, Schulder M, Mehta AD. Complication avoidance in laser interstitial thermal therapy: lessons learned. J Neurosurg. 2017;126(4):1238–45.

    PubMed  Google Scholar 

  119. Tao JX, Satzer D, Issa NP, et al. Stereotactic laser anterior corpus callosotomy for Lennox‐Gastaut syndrome. Epilepsia. 2020; https://doi.org/10.1111/epi.16535.

  120. Jea A, Vachhrajani S, Johnson KK, Rutka JT. Corpus callosotomy in children with intractable epilepsy using frameless stereotactic neuronavigation: 12-year experience et the Hospital for sick children in Toronto. Neurosurg Focus. 2008;25:E7.

    PubMed  Google Scholar 

  121. Jea A, Vachhrajani S, Widjaja E, Nilsson D, Raybaud C, Shroff M, Rutka JT. Corpus callosotomy in children and the disconnection syndromes: a review. Childs Nerv Syst. 2008;24:685–92.

    PubMed  Google Scholar 

  122. Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain. 2005;128:1188–98. https://doi.org/10.1093/brain/awh449.

    Article  PubMed  Google Scholar 

  123. Turanli G, Yalnizoglu D, Genc-Acikgoz D, Akalan N, Topcu M. Outcome and longterm follow-up after corpus callosotomy in childhood onset intractable epilepsy. Childs Nerv Syst. 2006;22:1322–7.

    PubMed  Google Scholar 

  124. Berg AT, Vickrey BG. Outcome measures. In: Engel J, Pedley TA, editors. Epilepsy: a comprehensive textbook. Philadelphia: Lippincott-Raven Publishers; 1998. p. 1891–9.

    Google Scholar 

  125. Shimizu H. Our experience with pediatric epilepsy surgery focusing on corpus callosotomy and hemispherectomy. Epilepsia. 2005;46(Suppl. 1):30–1.

    PubMed  Google Scholar 

  126. Fauser S, Zentner J. Critical review of palliative surgical techniques for intractable epilepsy. In: Advances and technical standards in neurosurgery. Wien: Springer; 2013.

    Google Scholar 

  127. Cendes F, Ragazzo PC, da Costa V, Martins LF. Corpus callosotomy in treatment of medically resistant epilepsy: preliminary results in a pediatric population. Epilepsia. 1993;34(5):910–7.

    CAS  PubMed  Google Scholar 

  128. Gilliam F, Wyllie E. Functional outcome of children following corpus callosum section. In: Tuxhorn I, Holthausen H, Boenigk H, editors. Paediatric epilepsy syndromes and their surgical treatment. London: John Libbey; 1997. p. 850–3.

    Google Scholar 

  129. Passamonti C, Zamponi N, Foschi N, Trignani R, Luzi M, Cesaroni E, Provinciali L, Scerrati M. Long-term seizure and behavioral outcomes after corpus callosotomy. Epilepsy Behav. 2014;41:23–9. https://doi.org/10.1016/j.yebeh.2014.08.130.

    Article  PubMed  Google Scholar 

  130. Graham D, Tisdall MM, Gill D. Corpus callosotomy outcomes in pediatric patients: a systematic review. Epilepsia. 2016;57(7):1053–68.

    PubMed  Google Scholar 

  131. Jalilian L, Limbrick DD, Steger-May K, Johnston J, Powers AK, Smyth MD. Complete versus anterior two-third corpus callosotomy in children. Analysis of outcome. J Neurosurg Pediatr. 2010;6:257–66.

    PubMed  Google Scholar 

  132. Rahimi SY, Park YD, Witcher MR, Lee KH, Marrufo M, Lee MR. Corpus callosotomy for treatment of pediatric epilepsy in the modern era. Pediatr Neurosurg. 2007;43:202–8.

    PubMed  Google Scholar 

  133. Wong TT, Kwan SY, Chang KP, Hsiu-Mei W, Yang TF, Chen YS, Yi-Yen L. Corpus callosotomy in children. Childs Nerv Syst. 2006;22:999–1011.

    PubMed  Google Scholar 

  134. Rathore C, Abraham M, Rao RM, George A, Sankara Sarma P, Radhakrishnan K. Outcome after corpus callosotomy in children with injurious drop attacks and severe mental retardation. Brain Dev. 2007;29:577–85.

    PubMed  Google Scholar 

  135. Asadi-Pooya AA, Sharan A, Nei M, Sperling MR. Corpus callosotomy. Epilepsy Behav. 2008;13:271–8.

    PubMed  Google Scholar 

  136. Ross MK, Reeves AG, Roberts DW. Post-commissurotomy mutism. Ann Neurol. 1984;16:114.

    Google Scholar 

  137. Provinciali L, Quattrini A, Papo I, del Pesce M, Mancini S. Neuropsychological changes after callosotomy in drug-resistant epilepsy: a study of the short-term evaluation. Acta Neurochir. 1988;94:15–22.

    CAS  PubMed  Google Scholar 

  138. Roberts DW. Corpus callosotomy. In: Reeves AG, editor. Epilepsy and the corpus callosum. New York: Plenum Press; 1985. p. 259–67.

    Google Scholar 

  139. Pilcher WH, Ojemann GA. Complications of epilepsy surgery. In: Post KD, Friedman E, McCormick P, editors. Postoperative complications in intracranial neurosurgery. Stuttgart: Thieme; 1993. p. 157–65.

    Google Scholar 

  140. Ferguson SM, Rayport M, Corrie WS. Neuropsychiatric observations on behavioral consequences of corpus callosum section for seizure control. In: Reeves AR, editor. Epilepsy and the corpus callosum. New York: Plenum Press; 1985. p. 501–14.

    Google Scholar 

  141. Levin HS, Mattson AJ, Levander M, et al. Effects of transcallosal surgery on interhemispheric transfer of information. Surg Neurol. 1993;40:65–74.

    CAS  PubMed  Google Scholar 

  142. Makari G, Holmes G, Murro A. Corpus callosotomy for the treatment of intractable epilepsy in children. J Epilepsy. 1989;2:1–7.

    Google Scholar 

  143. Bogen JE. Physiological consequences of complete and partial commissural section. In: Apuzzo MLJ, editor. Surgery of the third ventricle. Baltimore, MD: Williams & Wilkins; 1987. p. 175–94.

    Google Scholar 

  144. Gordon HW, Bogen JE, Sperry RW. Absence of deconnexion syndrome in two patients with partial section of the neocommissures. Brain. 1971;94:327–36.

    CAS  PubMed  Google Scholar 

  145. Jeeves MA, Simpson DA, Geffen G. Functional consequences of the transcallosal removal of intraventricular tumours. J Neurol Neurosurg Psychiat. 1979;42:134–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Shucart WA, Stein BM. Transcallosal approach to the anterior ventricular system. Neurosurgery. 1978;3:339–43.

    CAS  PubMed  Google Scholar 

  147. Winston KR, Cavazzuti V, Arkins T. Absence of neurological and behavioral abnormalities after anterior transcallosal operation for third ventricle lesions. Neurosurgery. 1979;4:386–93.

    CAS  PubMed  Google Scholar 

  148. Reeves AG, Risse G. Neurological effects of callosotomy. In: Reeves AG, Roberts DW, editors. Epilepsy and the corpus callosoum 2. Advances in behavioral biology, vol. 45. New York: Plenum; 1995. p. 241–51.

    Google Scholar 

  149. Nakasu Y, Isozumi T, Nioka H, Handa J. Mechanism of mutism following transcallosal approach to the ventricles. Acta Neurochir. 1991;110:146–53.

    CAS  PubMed  Google Scholar 

  150. Spencer SS. Corpus callosum section and other disconnection procedures for medically intractable epilepsy. Epilepsia. 1988;29:85–99.

    Google Scholar 

  151. Sass KJ, Spencer DD, Spencer SS, Novelly RA, Williamson PD, Mattson RH. Corpus callosotomy for epilepsy. II. Neurological and neuropsychological outcome. Neurology. 1988;38:24–8.

    CAS  PubMed  Google Scholar 

  152. Geschwind DH, Jacobini M, Mega MS, Zaidel DW, Cloughesy T, Zaidel E. Alien hand syndrome: interhemispheric motor disconnection due to a lesion in the midbody of the corpus callosum. Neurology. 1995;45:802–8.

    CAS  PubMed  Google Scholar 

  153. Campbell A, Bogen J, Smith A. Disorganization and reorganization of cognitive and sensorimotor functions in cerebral commissurotomy. Brain. 1981;104:493–511.

    PubMed  Google Scholar 

  154. Sass KJ, Novelly R, Spencer DD, Spencer SS. Mnestic and attention impairments following corpus callosum section for epilepsy. J Epilepsy. 1988;1:61–6.

    Google Scholar 

  155. Morrell F, Whisler WW, Bleck TP. Multiple subpial transection. A new approach to the surgical treatment of focal epilepsy. J Neurosurg. 1989;70:231–9.

    CAS  PubMed  Google Scholar 

  156. Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–22.

    PubMed  Google Scholar 

  157. Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic cortex. J Neurophysiol. 1957;20:408–34.

    CAS  PubMed  Google Scholar 

  158. Chervin RD, Pierce PA, Connors BW. Periodicity and directionality in the propagation of epileptiform discharces across neocortex. J Neurophysiol. 1988;60:1695–713.

    CAS  PubMed  Google Scholar 

  159. Wadman WJ, Gutnick MJ. Non-uniform propagation of epileptiform discharge in brain slices of rat neocortex. Neurosience. 1993;52:255–62.

    CAS  Google Scholar 

  160. Lueders H, Bustamante LA, Zablow L, Goldensohn ES. The independence of closely spaced discrete experimental spike foci. Neurology. 1981;31:846–51.

    CAS  PubMed  Google Scholar 

  161. Reichenthal E, Hocherman S. The critical cortical area for development of penicillin-induced epilepsy. Electrencephalogr Clin Neurophysiol. 1977;42:248–51.

    CAS  Google Scholar 

  162. Buelow JM, Aydelott P, Pierz DM, Heck B. Multiple subpial transection for Landau-Kleffner syndrome. AORN J. 1996;63:727–44.

    CAS  PubMed  Google Scholar 

  163. Grote CL, Van Slyke P, Hoeppner JA. Language outcome following multiple subpial transections for Landau-Kleffner syndrome. Brain. 1999;122:561–6.

    PubMed  Google Scholar 

  164. Morrell F, Whisler WW, Smith MC, Hoeppner TJ, de Toledo-Morrell L, Pierre-Louis SJ, Kanner AM, Buelow JM, Ristanovic R, Bergen D, et al. Landau-Kleffner syndrome. Treatment with subpial intracortical transection. Brain. 1995;118:1529–46.

    PubMed  Google Scholar 

  165. Blount JP, Langburt W, Otsubo H, Chitoku S, Ochi A, Weiss S, Snead OC, Rutka JT. Multiple subpial transections in the treatment of pediatric epilepsy. J Neurosurg. 2004;100:118–24. https://doi.org/10.3171/ped.2004.100.2.0118.

    Article  PubMed  Google Scholar 

  166. Shimizu H, Maehara T. Neuronal disconnection for the surgical treatment of pediatric epilepsy. Epilepsia. 2000;41(Suppl 9):28–30.

    PubMed  Google Scholar 

  167. Ntsambi-Eba G, Vaz G, Docquier MA, van Rijckevorsel K, Raftopoulos C. Patients with refractory epilepsy treated using a modified multiple subpial transection technique. Neurosurgery. 2013;72:890–7; discussion 897–8. https://doi.org/10.1227/NEU.0b013e31828ba750.

    Article  PubMed  Google Scholar 

  168. Patil AA, Andrews R. Long term follow-up after multiple hippocampal transection (MHT). Seizure J Br Epilepsy Assoc. 2013;22:731–4. https://doi.org/10.1016/j.seizure.2013.05.014.

    Article  Google Scholar 

  169. Polkey CE. Multiple subpial transection: a clinical assessment. Int Rev Neurobiol. 2001;45:547–69.

    CAS  PubMed  Google Scholar 

  170. Rolston JD, Deng H, Wang DD, Englot DJ, Chang EF. Multiple subpial transections for medically refractory epilepsy: a disaggregated review of patient-level data. Neurosurgery. 2017;82(5):613–20.

    PubMed Central  Google Scholar 

  171. Schramm J, Aliashkevich AF, Grunwald T. Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg. 2002;97:39–47.

    PubMed  Google Scholar 

  172. Hufnagel A, Zentner J, Fernandez G, Wolf HK, Schramm J, Elger CE. Multiple subpial transection for control of epilleptic seizures: effectiveness and safety. Epilepsia. 1997;38:678–88.

    CAS  PubMed  Google Scholar 

  173. Benifla M, Otsubo H, Ochi A, Snead OC 3rd, Rutka JT. Multiple subpial transection in pediatric epilepsy: indications and outcomes. Childs Nerv Syst. 2006;22:992–8.

    PubMed  Google Scholar 

  174. Benifla M, Rutka JT, Logan W, Donner EJ. Vagal nerve stimulation for refractory epilepsy in children: indications and experience at the Hospital for Sick children. Childs Nerv Syst. 2006;22:1018–26.

    PubMed  Google Scholar 

  175. Behdad A, Limbrick DD, Bertrand M, et al. Epilepsy surgery in children with seizures arising from the rolandic cortex. Epilepsia. 2009;50(6):1450–61.

    PubMed  Google Scholar 

  176. Spencer SS, Schramm J, Wyler A, O’Connor M, Orbach D, Krauss G, Sperling M, Devinsky O, Elger C, Lesser R, Mulligan L, Westerveld M. Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia. 2002;43:141–5.

    PubMed  Google Scholar 

  177. Orbach D, Romanelli P, Devinsky O, Doyle W. Late seizure recurrence after multiple subpial transections. Epilepsia. 2001;42(9):1130–3.

    CAS  PubMed  Google Scholar 

  178. Irwin K, Birch V, Lees J, Polkey C, Alarcon G, Binnie C, Smedley M, Baird G, Robinson RO. Multiple subpial transections in Landau-Kleffner syndrome. Dev Med Child Neurol. 2001;43:248–52.

    CAS  PubMed  Google Scholar 

  179. Cross JH, Neville BG. The surgical treatment of Landau-Kleffner syndrome. Epilepsia. 2009;50(Suppl 7):63–7.

    PubMed  Google Scholar 

  180. Downes M, Greenaway R, Clark M, Helen Cross J, Jolleff N, Harkness W, Kaliakatsos M, Boyd S, White S, Neville BG. Outcome following multiple subpial transection in Landau-Kleffner syndrome and related regression. Epilepsia. 2015;56(11):1760–6. https://doi.org/10.1111/epi.13132.

    Article  PubMed  Google Scholar 

  181. Gaylor JM, Raman G, Chung M, et al. Cochlear implantation in adults. A systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2013;139(3):265–72.

    PubMed  Google Scholar 

  182. North RB, et al. Spinal cord stimulation versus re-operation in patients with failed back surgery syndrome: an international multicenter randomised controlled trial (EVIDENCE Study). Neuromodulation. 2011;14:330–6.

    PubMed  Google Scholar 

  183. Weaver FM, Follett K, Stern M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Richardson RM, Abel TJ. A new era for surgical neurotherapeutics. Neurotherapeutics. 2019;16(1):1–2. https://doi.org/10.1007/s13311-019-00709-4.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hartshorn A, Jobst B. Responsive brain stimulation in epilepsy. Ther Adv Chronic Dis. 2018;9(7):135–42.

    PubMed  PubMed Central  Google Scholar 

  186. McGovern RA, Banks GP, McKhann GM II. New techniques and progress in epilepsy surgery. Curr Neurol Neurosci Rep. 2016; https://doi.org/10.1007/s11910-016-0661-6.

  187. Kwon C-S, Jetté N, Ghatan S. Perspectives on the current developments with neuromodulation for the treatment of epilepsy. Expert Rev Neurother. 2019; https://doi.org/10.1080/14737175.2020.1700795.

  188. Kwaku K, Ohemeng BS, Parham K. Vagal nerve stimulation. Indications, implantation, and outcomes. Otolaryngol Clin N Am. 2020;53:127–43.

    Google Scholar 

  189. Bigelow MD, Kouzani AZ. Neural stimulation systems for the control of refractory epilepsy: a review. J Neuroeng Rehabil. 2019;16:126. https://doi.org/10.1186/s12984-019-0605-x.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Schulze-Bonhage A. Long-term outcome in neurostimulation of epilepsy. Epilepsy Behav. 2019;91:25–9.

    PubMed  Google Scholar 

  191. Bailey P, Bremer F. A sensory cortical representation of the vagus nerve: with a note on the effects of low blood pressure on the cortical electrogram. J Neurophysiol. 1938;1(5):405–12.

    Google Scholar 

  192. Dell P, Olson R. Projections thalamiques, corticales et ce´re´belleuses des affe´rences visce´ rales vagales. Comptes rendus des se´ances de la Socie´te´ de biologie et de ses filiales. 1951;145(13-1):1084–8.

    CAS  Google Scholar 

  193. Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia. 1992;33(6):1005–12.

    CAS  PubMed  Google Scholar 

  194. Terry RS, Tarver WB, Zabara J. The implantable neurocybernetic prosthesis system. Pacing Clin Electrophysiol. 1991;14(1):86–93.

    CAS  PubMed  Google Scholar 

  195. Penry JK, Dean C. Prevention of intractable seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. 1990;31(Suppl 2):S40–3.

    PubMed  Google Scholar 

  196. Browne G. Cyberonics announces 100,000th patient implant of VNS therapy. 2012.

    Google Scholar 

  197. Rychlicki F, Zamponi N, Cesaroni E, Corpaci L, Trignani R, Ducati A, et al. Complications of vagal nerve stimulation for epilepsy in children. Neurosurg Rev. 2006;29:103–7.

    CAS  PubMed  Google Scholar 

  198. Ben-Menachem E. Vagus nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002;1(8):477–82.

    PubMed  Google Scholar 

  199. Ben-Menachem E, Manon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, Tarver WB, Wernicke JF. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia. 1994;35:616–26.

    CAS  PubMed  Google Scholar 

  200. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, Henry TR, Collins SD, Vaughn BV, Gilmartin RC, Labar DR, Morris GL 3rd, Salinsky MC, Osorio I, Ristanovic RK, Labiner DM, Jones JC, Murphy JV, Ney GC, Wheless JW. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51:48–55.

    CAS  PubMed  Google Scholar 

  201. Morris GL, Mueller MW. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The vagus nerve stimulation study group E01-E05. Neurology. 1999;53:1731–5.

    PubMed  Google Scholar 

  202. The Vagus Nerve Stimulation Study Group. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1995;45(2):224–30.

    Google Scholar 

  203. Alexander GM, Huang YZ, Soderblom EJ, et al. Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J Neurochem. 2017;140:629–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Krahl SE, Clark KB. Vagus nerve stimulation for epilepsy: a review of central mechanisms. Neurol Int. 2012;3:S47–52. https://doi.org/10.4103/2152-7806.103015.

    Article  Google Scholar 

  205. Henry TR, Bakay RAE, Votaw JR, et al. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia. 1998;39(9):983–90.

    CAS  PubMed  Google Scholar 

  206. Van Laere K, Vonck K, Boon P, Versijpt J, Dierckx R. Perfusion SPECT changes after acute and chronic vagus nerve stimulation in relation to prestimulus condition and long-term clinical efficacy. J Nucl Med. 2002;43(6):733–44.

    PubMed  Google Scholar 

  207. Vonck K, Van LK, Dedeurwaerdere S, Caemaert J, De RJ, Boon P. The mechanism of action of vagus nerve stimulation for refractory epilepsy: the current status. J Clin Neurophysiol. 2001;18:394–401.

    CAS  PubMed  Google Scholar 

  208. Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain Res. 1967;5:236–49.

    CAS  PubMed  Google Scholar 

  209. Ginn C, Patel B, Walker R. Existing and emerging applications for the neuromodulation of nerve activity through targeted delivery of electric stimuli. Int J Neurosci. 2019;129(10):1013–23.

    CAS  PubMed  Google Scholar 

  210. Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59:S3–S14.

    PubMed  Google Scholar 

  211. Koo B. EEG changes with vagus nerve stimulation. J Clin Neurophysiol. 2001;18:434–41.

    CAS  PubMed  Google Scholar 

  212. Randall WC, Ardell JL, Becker DM. Differential responses accompanying sequential stimulation and ablation of vagal branches to dog heart. Am J Physiol. 1985;249:133–40.

    Google Scholar 

  213. Samadani U, Baltuch GH. Vagus nerve stimulation. In: Baltuch GH, Villemure JG, editors. Operative techniques in epilepsy surgery. New York: Thieme; 2009. p. 149–57.

    Google Scholar 

  214. De Oliveira T, Franciscco AN, Demartini Z, et al. The role of vagus nerve stimulation in refractory epilepsy. Arq Neuropsiquiatr. 2017;75(9):657–66.

    PubMed  Google Scholar 

  215. Giordano F, Zicca A, Barba C, et al. Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity. Epilepsia. 2017;58(Suppl. 1):85–90.

    PubMed  Google Scholar 

  216. Santos PM. Evaluation of laryngeal function after implantation of the vagus nerve stimulation device. Otolaryngol Head Neck Surg. 2003;129(3):269–73.

    PubMed  Google Scholar 

  217. Shaw GY, Sechtem P, Searl J, Dowdy ES. Predictors of laryngeal complications in patients implanted with the Cyberonics vagal nerve stimulator. Ann Otol Rhinol Laryngol. 2006;115(4):260–7.

    PubMed  Google Scholar 

  218. Kumar R, Winston KR, Folzenlogen Z. Removal of vagus nerve stimulator leads and reuse of same site for reimplantation: technique and experience. World Neurosurg. 2016;91:190–4.

    PubMed  Google Scholar 

  219. Ramani R. Vagus nerve stimulation therapy for seizures. J Neurosurg Anesthesiol. 2008;20(1):29–35.

    PubMed  Google Scholar 

  220. Aalbers MW, Rijkers K, Klinkenberg S, et al. Vagus nerve stimulation lead removal or replacement: surgical technique, institutional experience, and literature overview. Acta Neurochir (Wien). 2015;157:1917–24.

    Google Scholar 

  221. Clark A, Kupermann RA, Auguste KI, et al. Intractable episodic bradycardia resulting from progressive lead traction in an epileptic child with a vagus nerve stimulator: a delayed complication. J Neurosurg Pediatr. 2012;9:389–93.

    PubMed  Google Scholar 

  222. Couch JD, Gilman AM, Doyle WK. Long-term expectations of vagus nerve stimulation: a look at battery replacement and revision surgery. Neurosurgery. 2016;78:42–6.

    PubMed  Google Scholar 

  223. Dlouhy BJ, Viljoen SV, Kung DK, et al. Vagus nerve stimulation after lead revision. Neurosurg Focus. 2012;32:E11.

    PubMed  Google Scholar 

  224. Espinosa J, Aiello MT, Naritoku DK. Revision and removal of stimulating electrodes following long-term therapy with the vagus nerve stimulator. Surg Neurol. 1999;51:659–64.

    CAS  PubMed  Google Scholar 

  225. Kahlow H, Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy: a single center longitudinal study of 143 patients. Seizure. 2013;22:827–33.

    PubMed  Google Scholar 

  226. Kalkanis JG, Krishna P, Espinosa JA, et al. Self-inflicted vocal cord paralysis in patients with vagus nerve stimulators. Report of two cases. J Neurosurg. 2002;96:949–51.

    PubMed  Google Scholar 

  227. McDonald J, Couldwell WT. Revision of vagal nerve stimulator electrodes: technical approach. Acta Neurochir (Wien). 2004;146:567–70.

    Google Scholar 

  228. Ortler M, Unterhofer C, Dobesberger J, et al. Complete removal of vagus nerve stimulator generator and electrodes. J Neurosurg Pediatr. 2010;5:191–4.

    PubMed  Google Scholar 

  229. Revesz D, Rydenhag B, Ben-Menachem E. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. J Neurosurg Pediatr. 2016;18:97–104.

    PubMed  Google Scholar 

  230. Rijkers K, Berfelo MW, Cornips EM, et al. Hardware failure in vagus nerve stimulation therapy. Acta Neurochir (Wien). 2008;150:403–5.

    CAS  Google Scholar 

  231. Smyth MD, Tubbs RS, Bebin EM, Grabb PA, Blount JP. Complications of chronic of chronic vagus nerve stimulation for epilepsy in children. J Neurosurg. 2003;99:500–3.

    PubMed  Google Scholar 

  232. Tran Y, Shah AK, Mittal S. Lead breakage and vocal cord paralysis following blunt neck trauma in a patient with vagal nerve stimulator. J Neurol Sci. 2011;304:132–5.

    PubMed  Google Scholar 

  233. Ng WH, Donner E, Go C, et al. Revision of vagal nerve stimulation (VNS) electrodes: review and report on use of ultra-sharp monopolar tip. Childs Nerv Syst. 2010;26:1081–4.

    PubMed  Google Scholar 

  234. Fahy BG. Intraoperative and perioperative complications with a vagus nerve stimulation device. J Clin Anesth. 2010;22:213–22.

    PubMed  Google Scholar 

  235. Hatton KW, McLarney JT, Pittman T, et al. Vagal nerve stimulation: overview and implications for anesthesiologists. Anesth Analg. 2006;103:1241–9.

    PubMed  Google Scholar 

  236. Horowitz G, Amit M, Fried I, et al. Vagal nerve stimulation for refractory epilepsy: the surgical procedure and complications in 100 implantations by a single medical center. Eur Arch Otorhinolaryngol. 2013;270:355–8.

    PubMed  Google Scholar 

  237. Navas M, Navarrete EG, Pascual JM, et al. Treatment of refractory epilepsy in adult patients with right-sided vagus nerve stimulation. Epilepsy Res. 2010;90:1–7.

    PubMed  Google Scholar 

  238. Spuck S, Tronnier V, Orosz I, Schönweiler R, Sepehrnia A, Nowak G, et al. Operative and technical complications of vagus nerve stimulator implantation. Neurosurgery. 2010;67:489–94.

    PubMed  Google Scholar 

  239. Tatum WO, Moore DB, Stecker MM, et al. Ventricual asystole during vagus nerve stimulation for epilepsy in humans. Neurology. 1999;52:1267–9.

    PubMed  Google Scholar 

  240. Zalvan C, Sulica L, Wolf S, et al. Laryngopharyngeal dysfunction from the implant vagal nerve stimulator. Laryngoscope. 2003;113:221–5.

    PubMed  Google Scholar 

  241. O’Neill BR, Wilberger JE. Revision of vagal nerve stimulator electrodes through a posterior cervical triangle approach: technical note. Neurosurgery. 2010;67(2 Suppl Operative):457–60.

    PubMed  Google Scholar 

  242. Amar AP, Heck CN, Levy ML, Smith T, DeGiorgio CM, Oviedo S, Apuzzo ML. An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery. 1998;43:1265–76; discussion 1276–80.

    CAS  PubMed  Google Scholar 

  243. DeGiorgio C, Heck C, Bunch S, Britton J, Green P, Lancman M, Murphy J, Olejniczak P, Shih J, Arrambide S, Soss J. Vagus nerve stimulation for epilepsy: randomized comparison of three stimulation paradigms. Neurology. 2005;65:317–9. https://doi.org/10.1212/01.wnl.0000168899.11598.00.

    Article  CAS  PubMed  Google Scholar 

  244. Klinkenberg S, Aalbers MW, Vles JS, et al. Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. Dev Med Child Neurol. 2012;54(9):855–61.

    PubMed  Google Scholar 

  245. Ryvlin P, Gilliam FG, Nguyen DK, et al. The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia. 2014;55(6):893–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Scherrmann J, Hoppe C, Kral T, Schramm J, Elger CE. Vagus nerve stimulation: clinical experience in a large patient series. J Clin Neurophysiol. 2001;18:408–14.

    CAS  PubMed  Google Scholar 

  247. DeGiorgio CM, Schachter SC, Handforth A, Salinsky M, Thompson J, Uthman B, Reed R, Collins S, Tecoma E, Morris GL, Vaughn B, Naritoku DK, Henry T, Labar D, Gilmartin R, Labiner D, Osorio I, Ristanovic R, Jones J, Murphy J, Ney G, Wheless J, Lewis P, Heck C. Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000;41(9):1195–200.

    CAS  PubMed  Google Scholar 

  248. González HFJ, Yengo-Kahn A, Englot DJ. Vagus nerve stimulation for the treatment of epilepsy. Neurosurg Clin N Am. 2019;30:219–30.

    PubMed  PubMed Central  Google Scholar 

  249. Wiebe S, Jette N. Randomized trials and collaborative research in epilepsy sugery: future directions. Can J Neurol Sci. 2006;33:365–71.

    PubMed  Google Scholar 

  250. Ardesch JJ, Buschman HP, Wagener-Schimmel LJ, et al. Vagus nerve stimulation for medically refractory epilepsy: a long-term follow-up study. Seizure. 2007;16(7):579–85.

    CAS  PubMed  Google Scholar 

  251. Ardesch JJ, Buschman HP, van der Burgh PH, Wagener-Schimmel LJ, van der Aa HE, Hageman G, et al. Cardiac responses of vagus nerve stimulation: intra-operative bradycardia and subsequent chronic stimulation. Clin Neurol Neurosurg. 2007;109:849–52.

    CAS  PubMed  Google Scholar 

  252. Ben-Menachem E, Hellstrom K, Waldton C, Augustinson LE. Evaluation of refractory epilepsy treated with vagus nerve stimulation for up to 5 years. Neurology. 1999;52:1265–7.

    CAS  PubMed  Google Scholar 

  253. Boon P, Vonck K, van Rijckevorsel K, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015;32:52–61.

    PubMed  Google Scholar 

  254. Chavel SM, Westerveld M, Spencer S. Long-term outcome of vagus nerve stimulation for refractory partial epilepsy. Epilepsy Behav. 2003;4(3):302–9.

    PubMed  Google Scholar 

  255. Fisher RS, Afra P, Macken M, et al. Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance—the U.S. E-37 trial. Neuromodulation. 2016;19:188–95.

    PubMed  Google Scholar 

  256. Huf RL, Mamelak A, Kneedy-Cayem K. Vagus nerve stimulation therapy: 2-year prospective open-label study of 40 subjects with refractory epilepsy and low IQ who are living in long-term care facilities. Epilepsy Behav. 2005;6:417–23.

    PubMed  Google Scholar 

  257. Kang HC, Hwang YS, Kim DS, Kim HD. Vagus nerve stimulation in pediatric intractable epilepsy: a Korean bicentric study. Acta Neurochir Suppl. 2006;99:93–6.

    CAS  PubMed  Google Scholar 

  258. Labar D, Murphy J, Tecoma E. Vagus nerve stimulation for medication-resistant generalized epilepsy. E04 VNS Study Group. Neurology. 1999;52(7):1510–2.

    CAS  PubMed  Google Scholar 

  259. Parker AP, Polkey CE, Binnie CD, et al. Vagal nerve stimulation in epileptic encephalopathies. Pediatrics. 1999;103(4):778–82.

    CAS  PubMed  Google Scholar 

  260. Salinsky MC, Uthman BM, Ristanovic RK, et al. Vagus nerve stimulation for the treatment of medically intractable seizures. results of a 1-year open extension trial. Arch Neurol. 1996;53:1176–80.

    CAS  PubMed  Google Scholar 

  261. Vonck K, Thadani V, Gilbert K, Dedeurwaerdere S, De Groote L, De Herdt V, et al. Vagus nerve stimulation for refractory epilepsy: a transatlantic experience. J Clin Neurophysiol. 2004;21:283–9.

    PubMed  Google Scholar 

  262. Majoie HJ, Berfelo MW, Aldenkamp AP, Evers SM, Kessels AG, Renier WO. Vagus Nerve stimulation in children with therapy-resistant epilepsy diagnosed as Lennox-Gastaut syndrome. J Clin Neurophysiol. 2001;18:419–28.

    CAS  PubMed  Google Scholar 

  263. Amar AP, Apuzzo ML, Liu CY. Vagus nerve stimulation therapy after failed cranial surgery for intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. Neurosurgery. 2004;55:1086–93.

    PubMed  Google Scholar 

  264. George R, Salinsky M, Kuzniecky R, Rosenfeld W, Bergen D, Tarver WB, Wernicke JF, First International Vagus Nerve Stimulation Study Group. Vagus nerve stimulation for treatment of partial seizures: 3. Long-term follow-up on first 67 patients exiting a controlled study. Epilepsia. 1994;35:637–43.

    CAS  PubMed  Google Scholar 

  265. Helmers SL, Whenless JW, Frost M, Gates J, Levisohn P, Tardo C, Conry JA, Yalnizoglou D, Madsen JR. Vagus nerve stimulation therapy in pediatric patients with refractory epilepsy: a retrospective study. J Child Neurol. 2001;16:843–8.

    CAS  PubMed  Google Scholar 

  266. Labar D. Vagus nerve stimulation for 1 year in 269 patients on unchanged antiepileptic drugs. Seizure. 2004;13:392–8.

    PubMed  Google Scholar 

  267. Murphy JV, Pediatric VNS Study Group. Left vagal nerve stimulation in children with medically refractory epilepsy. J Pediatr. 1999;134:563–6.

    CAS  PubMed  Google Scholar 

  268. Patwardhan RV, Strong B, Bebin EM, Mathisen J, Grabb PA. Efficacy of vagal nerve stimulation in children with medically refractory epilepsy. Neurosurgery. 2000;47:1353–7; discussion 1357–8.

    CAS  PubMed  Google Scholar 

  269. Spanaki MV, Allen LS, Mueller WM, et al. Vagus nerve stimulation therapy: 5-year of greater outcome at a university-based epilepsy center. Seizure. 2004;13:587–90.

    PubMed  Google Scholar 

  270. Alexopoulos AV, Kotagal P, Loddenkemper T, Hammel J, Bingaman WE. Long-term results with vagus nerve stimulation in children with pharmacoresistant epilepsy. Seizure. 2006;15:491–503.

    PubMed  Google Scholar 

  271. Frost M, Gates J, Helmers SL, Wheless JW, Levisohn P, Tardo C, Conry JA. Vagus nerve stimulation in children with refractory seizures associated with Lennox-Gastaut syndrome. Epilpesia. 2001;42:1148–52.

    CAS  Google Scholar 

  272. Murphy JV, Torkelson R, Dowler I, Simon S, Hudson S. Vagal nerve stimulation in refractory epilepsy: the first 100 patients receiving vagal nerve stimulation at a pediatric center. Arch Adolesc Med. 2003;157:260–4.

    Google Scholar 

  273. Renfroe JB, Wheless JW. Earlier use of adjunctive nerve stimulation therapy for refractory epilepsy. Neurology. 2002;59:S26–30.

    PubMed  Google Scholar 

  274. Shahwan A, Bailey C, Maxiner W, Harvey AS. Vagus nerve stimulation for refractory epilepsy in children: more to VNS than seizure frequency reduction. Epilepsia. 2009;50:1220–8.

    PubMed  Google Scholar 

  275. Uthman BM, Reichl AM, Dean JC, Eisenschenk S, Gilmore R, Reid S, Roper SN, Wilder BJ. Effectiveness of vagus nerve stimulation in epilepsy patients: a 12-year observation. Neurology. 2004;63:1124–6.

    CAS  PubMed  Google Scholar 

  276. De Herdt V, Boon P, Ceulemans B, Hauman H, Lagae L, Legros B, Sadzot B, Van Bogaert P, van Rijckevorsel K, Verhelst H, Vonck K. Vagus nerve stimulation for refractory epilepsy: a Belgian multicenter study. Eur J Paediatr Neurol. 2007;11:261–9.

    PubMed  Google Scholar 

  277. Elliott RE, Morsi A, Kalhorn SP, Marcus J, Sellin J, Kang M, Silverberg A, Rivera E, Geller E, Carlson C, Devinsky O, Doyle WK. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: long-term outcomes and predictors of response. Epilepsy Behav. 2011;20:57–63.

    PubMed  Google Scholar 

  278. Elliott RE, Rodgers SD, Bassani L, et al. Vagus nerve stimulation for children with treatment-resistant epilepsy: a consecutive series of 141 cases. J Neurosurg Pediatr. 2011;7:491–500.

    PubMed  Google Scholar 

  279. Tatum WOT, Helmers SL. Vagus nerve stimulation and magnet use: optimizing benefits. Epilepsy Behav. 2009;15:299–302.

    PubMed  Google Scholar 

  280. Wang H-J, Zhu GTL, Chen D, et al. Predictors of seizure reduction outcome after vagus nerve stimulation in drug-resistant epilepsy. Eur J Epilepsy. 2019;66:53–60.

    Google Scholar 

  281. Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg. 2011;115:1248–55.

    PubMed  Google Scholar 

  282. Englot DJ, Chang EF, Auguste KI. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type. Neurosurg Clin N Am. 2011;22:443–8. https://doi.org/10.1016/j.nec.2011.07.002.

    Article  PubMed  Google Scholar 

  283. Englot DJ, Rolston JD, Wright CW, et al. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery. 2015;79(3):345–53.

    Google Scholar 

  284. Ben-Menachem E. Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol. 2001;18:415–8.

    CAS  PubMed  Google Scholar 

  285. Kostov K, Kostov H, Tauboll E. Longterm vagus nerve stimulation in the treatment of Lennox-Gastaut syndrome. Epilepsy Behav. 2009;16:321–4.

    PubMed  Google Scholar 

  286. Rosenfeld WE, Roberts DW. Tonic and atonic seizures: what’s next—VNS or callosotomy? Epilepsia. 2009;50(Suppl. 8):25–30.

    PubMed  Google Scholar 

  287. Rolston JD, Englot DJ, Wang DD, Garcia PA, Chang EF. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: a systematic review. Epilepsy Behav. 2015;51:13–7. https://doi.org/10.1016/j.yebeh.2015.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Marras CE, Chiesa V, et al. Vagus nerve stimulation in refractory epilepsy: new indications and outcome assessment. Epilepsy Behav. 2013; https://doi.org/10.1016/j.yebeh.2013.05.021.

  289. Kubota Y, Nakamoto H, Miyao S, Kawamata T. Efficacy of vagal nerve stimulation for pharmacoresistant poststroke epilepsy. World Neurosurg. 2020;133:e448–51.

    PubMed  Google Scholar 

  290. Hoppe C, Wagner L, Hoffmann JM, et al. Comprehensive long-term outcome of best drug treatment with or without add-on vagus nerve stimulation for epilepsy: a retrospective matched pairs case-control study. Seizure. 2013;22(2):109–15.

    PubMed  Google Scholar 

  291. Sherman EM, Connolly MB, Slick DJ, Eyrl KL, Steinbok P, Farrell K. Quality of life and seizure outcome after vagus nerve stimulation in children with intractable epilepsy. J Child Neurol. 2008;23:991–8.

    PubMed  Google Scholar 

  292. Aldenkamp AP, Majoie HJ, Berfelo MW, Evers SM, Kessels AG, Renier WO, Wilmink J. Long-term effects of 24-month treatment with vagus nerve stimulation on behavior in children with Lennox-Gastaut syndrome. Epilepsy Behav. 2002;3:475–9.

    PubMed  Google Scholar 

  293. Arya R, Greiner HM, Lewis A, Horn PS, Mangano FT, Gonsalves C, et al. Predictors of response to vagus nerve stimulation in childhood-onset medically refractory epilepsy. J Child Neurol. 2014;29:1652–9.

    PubMed  Google Scholar 

  294. Amar AP, Apuzzo ML, Liu CY. Vagus nerve stimulation therapy after failed cranial surgery for intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. Neurosurgery. 2008;62(Suppl 2):506–13.

    PubMed  Google Scholar 

  295. Koutroumanidis M, Binnie CD, Hennessy MJ, Alarcon G, Elwes RDC, Toone BK, Chandler C, Selway R, Polkey C, O’Connor SA. VNS in patients with previous unsuccessful resective epilepsy surgery: antiepileptic and psychotropic effects. Acta Neurol Scand. 2003;107:117–21.

    CAS  PubMed  Google Scholar 

  296. Vale FL, Ahmadian A, Youssef AS, Tatum WO, Benabis SR. Long-term outcome of vagus nerve stimulation therapy after failed epilepsy surgery. Seizure. 2011;20:244–8.

    PubMed  Google Scholar 

  297. Lesser RP. Unexpected places. How did vagus nerve stimulation become a treatment for epilepsy? Neurology. 1999;52:1117–8.

    CAS  PubMed  Google Scholar 

  298. Englot DJ, Rolston JD, Wang DD, Hassnain KH, Gordon CM, Chang EF. Efficacy of vagus nerve stimulation in posttraumatic versus nontraumatic epilepsy. J Neurosurg. 2012;117:970–7. https://doi.org/10.3171/2012.8.JNS122.

    Article  PubMed  Google Scholar 

  299. Lee HO, Koh EJ, Oh YM, Park SS, Kwon KH, Choi HY. Effect of vagus nerve stimulation in post-traumatic epilepsy and failed epilepsy surgery: preliminary report. J Korean Neurosurg Soc. 2008;44(4):196–8.

    PubMed  PubMed Central  Google Scholar 

  300. Ryvlin P, So EL, Gordon CM, et al. Long-term surveillance of SUDEP in drug-resistant epilepsy patients treated with VNS therapy. Epilepsia. 2018;59(3):562–72.

    CAS  PubMed  Google Scholar 

  301. Elger G, Hoppe C, Falkai P, et al. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res. 2000;42(2–3):203–10.

    CAS  PubMed  Google Scholar 

  302. Ergene E, Behr PK, Shih JJ. Quality-of-life assessment in patients treated with vagus nerve stimulation. Epilepsy Behav. 2001;2:284–7.

    PubMed  Google Scholar 

  303. George MS, Rush AJ, Sackeim HA, et al. Vagus nerve stimulation (VNS): utility in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2003;6(1):73–83.

    PubMed  Google Scholar 

  304. Harden CL, Pulver MC, Radvin LD, Nikolov B, Halper JP, Labar DR. A pilot study of mood in epilepsy patients treated via vagus nerve stimulation. Epilepsy Behav. 2000;1:93–9.

    PubMed  Google Scholar 

  305. Marlow BA, Edwards J, Marzec M, Sagher O, Ross D, Fromes G. Vagus nerve stimulation reduces daytime sleepiness in epilepsy patients. Neurology. 2001;57:879–84.

    Google Scholar 

  306. Englot DJ, Hassnain KH, Rolston JD, et al. Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data. Epilepsy Behav. 2017;66:4–9.

    PubMed  Google Scholar 

  307. Cramer J. Exploration of changes in health related quality of life after 3 months of vagus nerve stimulation. Epilepsy Behav. 2001;2:460–5.

    PubMed  Google Scholar 

  308. Ventureyra EC. Transcutaneous vagus nerve stimulation for partial onset seizure therapy. A new concept. Childs Nerv Syst. 2000;16(2):101–2.

    CAS  PubMed  Google Scholar 

  309. Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (tVNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia. 2012;53(7):115–8.

    Google Scholar 

  310. Aihua L, Lu S, Liping L, et al. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 2014;39:105–10.

    PubMed  Google Scholar 

  311. Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 2016;9(3):356–63.

    CAS  PubMed  Google Scholar 

  312. Liu A, Rong P, Gong L, et al. Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life. Med Sci Monit. 2018;24:8439–48.

    PubMed  PubMed Central  Google Scholar 

  313. Eggleston KS, Olin BD, Fisher RS. Ictal tachycardia: the head-heart connection. Seizure. 2014;23:496–505.

    PubMed  Google Scholar 

  314. Chen W, Meng FG. Ictal heart rate changes and the effects of vagus nerve stimulation for patients with refractory epilepsy. Neuropsychiatr Dis Treat. 2017;13:2351–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Ravan M. Investigating the correlation between short-term effectiveness of VNS Therapy in reducing the severity of seizures and long-term responsiveness. Epilepsy Res. 2017;133:46–53.

    PubMed  Google Scholar 

  316. Hamilton P, Soryal I, Dhahri P, Wimalachandra W, Leat A, Hughes D, et al. Clinical outcomes of VNS therapy with AspireSR® (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre. Seizure. 2018;58:120–6.

    PubMed  Google Scholar 

  317. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007;8(8):623–35.

    CAS  PubMed  Google Scholar 

  318. Moruzzi G. Effects at different frequencies of cerebellar stimulation upon postural tonus and myotatic reflexes. Electroencephalogr Clin Neurophysiol. 1950;2:463–9.

    CAS  PubMed  Google Scholar 

  319. Tyrand R, Seeck M, Pollo C, Boex C. Effects of amygdala-hippocampal stimulation on synchronization. Epilepsy Res. 2014;108:327–30. https://doi.org/10.1016/j.eplepsyres.2013.11.024.

    Article  CAS  PubMed  Google Scholar 

  320. Laxpati NG, Kasoff WS, Gross RE. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics. 2014;11:508–26. https://doi.org/10.1007/s13311-014-0279-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Velasco AL, Velasco F, Jimenez F, Velasco M, Castro G, Carrillo-Ruiz JD, Fanghänel G, Boleaga B. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of quality of life in patients with Lennox-Gastaut syndrome. Epilepsia. 2006;47:1203–12.

    PubMed  Google Scholar 

  322. Sprengers M, Vuncle K, Carrett E, et al. Deep brain and cortical stimulation for epilepsy. Cochrane Database Syst Rev. 2017;7:1–107.

    Google Scholar 

  323. Fridley J, Thomas JG, Navarro JC, Yoshor D. Brain stimulation for the treatment of epilepsy. Neurosurg Focus. 2012;32(3):E13. https://doi.org/10.3171/2012.

    Article  PubMed  Google Scholar 

  324. Rolston JD, Englot DJ, Wang DD, Shih T, Chang EF. Comparison of seizure control outcomes and the safety of vagus nerve, thalamic deep brain, and responsive neurostimulation: evidence from randomized controlled trials. Neurosurg Focus. 2012;32(3):E14. https://doi.org/10.3171/2012.1.

    Article  PubMed  Google Scholar 

  325. Rolston JD, Blevins LS Jr. Gamma knife radiosurgery for acromegaly. Int J Endocrinol. 2012; https://doi.org/10.1155/2012/821579. Epub 2012 Feb 13

  326. Halpern CH, Samadani U, Litt B, Jaggi JL, Baltuch GH. Deep brain stimulation for epilepsy. Neurotherapeutics. 2008;5(1):59–67.

    PubMed  PubMed Central  Google Scholar 

  327. Lehtimäki K, Coenen VA, Ferreira AG, et al. The surgical approach to the anterior nucleus of thalamus in patients with refractory epilepsy: experience from the international multicenter registry (MORE). Neurosurgery. 2018; https://doi.org/10.1093/neuros/nyy023.

  328. Koeppen JA, Nahravani F, Kramer M, et al. Electrical stimulation of the anterior thalamus for epilepsy: clinical outcome and analysis of efficient target. Neuromodulation. 2018; https://doi.org/10.1111/ner.12865.

  329. Schaper FLWVJ, Zhao Y, Janssen MLF, et al. Single-cell recordings to target the anterior nucleus of the thalamus in deep brain stimulation for patients with refractory epilepsy. Int J Neural Syst. 2019;29(4):1850012. https://doi.org/10.1142/S0129065718500120.

    Article  PubMed  Google Scholar 

  330. Mirski MA, Rossell LA, Terry JB, Fisher RS. Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res. 1997;28:89–100.

    CAS  PubMed  Google Scholar 

  331. Salanova V. Deep brain stimulation for epilepsy. Epilepsy Behav. 2018; https://doi.org/10.1016/j.yebeh.2018.06041.

  332. Van der Vils TAMB, Schijns OEMG, Schaper FLWVI, et al. Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev. 2019;42(2):287–96.

    Google Scholar 

  333. Fisher RS, Uematsu S, Krauss G, Cysyk BJ, McPherson R, Lesser RP, Gordon B, Schwerdt P, Rise M. Placebo-controlled pilot study of centormedian thalamic stimulation in treatment of intractable seizures. Epilepsia. 1992;33:841–51.

    CAS  PubMed  Google Scholar 

  334. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J, DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N, Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N, SANTE Study Group. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908.

    PubMed  Google Scholar 

  335. Téllez-Zenteno JF, McLachlan RS, Parrent A, Kubu CS, Wiebe S. Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology. 2006;66:1490–4.

    PubMed  Google Scholar 

  336. Velasco F, Carrillo-Ruiz JD, Brito F, Velasco M, Velasco AL, Marquez I, Davis R. Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia. 2005;46:1071–81.

    PubMed  Google Scholar 

  337. Herrman H, Egge A, Konglund AE, Ramm-Pettersen J, Dietrichs E, Taubøll E. Anterior thalamic deep brain stimulation in refractory epilepsy: a randomized, double-blinded study. Acta Neurol Scand. 2019;139(3):294–304.

    PubMed  Google Scholar 

  338. Salanova V, Witt T, Worth R, Henry TR, Gross RE, Nazzaro JM, Labar D, Sperling MR, Sharan A, Sandok E, Handforth A, Stern JM, Chung S, Henderson JM, French J, Baltuch G, Rosenfeld WE, Garcia P, Barbaro NM, Fountain NB, Elias WJ, Goodman RR, Pollard JR, Troster AI, Irwin CP, Lambrecht K, Graves N, Fisher R, Group SS. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84:1017–25. https://doi.org/10.1212/WNL.0000000000001334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Oh SY, Kim HJ, Lee JK, et al. Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients. Seizure. 2012;21:183–7.

    PubMed  Google Scholar 

  340. Lee KJ, Shon YM, Cho CB. Long-term outcome of anterior thalamic nucleus stimulation for intractable epilepsy. Stereotact Funct Neurosurg. 2012;90(6):379–85.

    PubMed  Google Scholar 

  341. Krishna V, King NK, Sammartino F, Strauss I, Andrade DM, Wennberg RA, et al. Anterior nucleus deep brain stimulation for refractory epilepsy: insights into patterns of seizure control and efficacious target. Neurosurgery. 2016;78(6):802–11.

    PubMed  Google Scholar 

  342. Kim SH, Lim SC, Kim J, Son BC, Lee KJ, Shon YM. Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: a 11-year, single center experience. Seizure. 2017;52:154–61.

    PubMed  Google Scholar 

  343. Park HR, Choi SJ, Joo EY, et al. The role of anterior thalamic deep brain stimulation as an alternative therapy in patients with previously failed vagus nerve stimulation for refractory epilepsy. Stereotact Funct Neurosurg. 2019; https://doi.org/10.1159/000502344.

  344. Kim SH, Lim SC, Yang DW, et al. Thalamo-cortical network underlying deep brain stimulation of centromedian thalamic nuclei in intractable epilepsy: a multimodal imaging analysis. Neuropsychiatr Dis Treat. 2017;13:2607–19.

    PubMed  PubMed Central  Google Scholar 

  345. Hachem LD, Yan H, Ibrahim GM. Invasive neuromodulation for the treatment of pediatric epilepsy. Neurotherapeutics. 2018; https://doi.org/10.1007/s13311-018-00685-1.

  346. Valentin A, Garcia Navarrete E, Chelvarajah R, et al. Deep brain stimulation of the centromedian thalamic nucleus for the treatment of generalized and frontal epilepsies. Epilepsia. 2013;54(10):1823–33.

    PubMed  Google Scholar 

  347. Tröster AI, Meador KJ, Irwin CP, et al. Memory and mood outcomes after anterior thalamic stimulation for refractory partial epilepsy. Seizure. 2017;45:133–41.

    PubMed  Google Scholar 

  348. Novais F, Pestana LC, Loureiro S, et al. Predicting de novo psychopathology after epilepsy surgery: a 3-year cohort study. Epilepsy Behav. 2019;90:204–8. https://doi.org/10.1016/j.yebeh.2018.11.037.

    Article  PubMed  Google Scholar 

  349. Lesser RP, Luders H, Klem G, et al. Cortical afterdischarge and functional response thresholds: results of extraoperative testing. Epilepsia. 1984;25:615–21.

    CAS  PubMed  Google Scholar 

  350. Tran DK, Paff M, Mnatsakanyan L, et al. A novel robotic-assisted technique to implant the responsive neurostimulation system. Oper Neurosurg. 2019; https://doi.org/10.1093/ons/opz226.

  351. Chan AY, Tran DK, Paff MR, et al. Robotic orthogonal implantation of Responsive Neurostimulation (RNS) depth electrodes in the mesial temporal lobe: case series. Oper Neurosurg. 2019; https://doi.org/10.1093/ons/opz360.

  352. Ma BB, Rao VR. Responsive neurostimulation: candidates and considerations. Epilepsy Behav. 2018;88:388–95.

    PubMed  Google Scholar 

  353. Matias CM, Sharan AD, Wu C, et al. Responsive neurostimulation for the treatment of epilepsy. Neurosurg Clin N Am. 2018; https://doi.org/10.1016/j.nec.2018.12.006.

  354. Morrell MJ, Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–304.

    PubMed  Google Scholar 

  355. Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 2019;153:68–70.

    PubMed  Google Scholar 

  356. Elder C, Friedman D, Devinsky O, Doyle W, Dugan P. Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatmentresistant multifocal epilepsy. Epilepsia Open. 2019;4(1):187–92.

    PubMed  PubMed Central  Google Scholar 

  357. Sisterson ND, Wozny TA, Kokkinos V, et al. Closed-loop brain stimulation for drug-resistant epilepsy: towards an evidence-based approach to personalized medicine. Neurotherapeutics. 2018; https://doi.org/10.1007/s13311-018-00682-4.

  358. Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, Salanova V, Cole AJ, Smith MC, Gwinn RP, Skidmore C, Van Ness PC, Bergey GK, Park YD, Miller I, Geller E, Rutecki PA, Zimmerman R, Spencer DC, Goldman A, Edwards JC, Leiphart JW, Wharen RE, Fessler J, Fountain NB, Worrell GA, Gross RE, Eisenschenk S, Duckrow RB, Hirsch LJ, Bazil C, O’Donovan CA, Sun FT, Courtney TA, Seale CG, Morrell MJ. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014;55:432–41. https://doi.org/10.1111/epi.12534.

    Article  PubMed  PubMed Central  Google Scholar 

  359. Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, Srinivasan S, Jobst B, Gross RE, Shields DC, Barkley G, Salanova V, Olejniczak P, Cole A, Cash SS, Noe K, Wharen R, Worrell G, Murro AM, Edwards J, Duchowny M, Spencer D, Smith M, Geller E, Gwinn R, Skidmore C, Eisenschenk S, Berg M, Heck C, Van Ness P, Fountain N, Rutecki P, Massey A, O’Donovan C, Labar D, Duckrow RB, Hirsch LJ, Courtney T, Sun FT, Seale CG. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84:810–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Nair D, Morrell MJ, RNS System Investigators. Nine-year prospective safety and effectiveness outcomes from the long-term treatment trial of the RNS® system. In: AES. Annual Meeting Abstract Database. 2018. AESnet.org.

  361. Meador KJ, Kapur R, Loring DW, et al. Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation. Epilepsy Behav. 2015;45:242–7.

    PubMed  Google Scholar 

  362. Geller EB, Skarpaas TL, Gross RE, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58:994–1004.

    PubMed  Google Scholar 

  363. Jobst BC, Kapur R, Barkley GL, et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia. 2017;58:1005–14.

    PubMed  Google Scholar 

  364. Singhal NS, Numis AL, Lee MB, et al. Responsive neurostimulation for treatment of pediatric drug-resistant epilepsy. Epilepsy Behav Case Rep. 2018;10:21–4.

    PubMed  PubMed Central  Google Scholar 

  365. Loring DW, Kapur R, Meador KJ, et al. Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy. Epilepsia. 2015;56:1836–44.

    PubMed  Google Scholar 

  366. Lundstrom BN, Worrell GA, Stead M, et al. Chronic subthreshold cortical stimulation: a therapeutic and potentially restorative therapy for focal epilepsy. Expert Rev Neurother. 2017;17:661–6.

    CAS  PubMed  Google Scholar 

  367. Child ND, Stead M, Wirrell EC, et al. Chronic subthreshold subdural cortical stimulation for the treatment of focal epilepsy originating from eloquent cortex. Epilepsia. 2014;55:e18–21.

    PubMed  Google Scholar 

  368. Lundstrom BN, Meisel C, Van Gompel J, et al. Comparing spiking and slow wave activity from invasive electroencephalography in patients with and without seizures. Clin Neurophysiol. 2018;129:909–19.

    PubMed  PubMed Central  Google Scholar 

  369. Velasco M, Velasco F, Velasco AL, et al. Subacute electrical stimulation of the hippocampus blocks intractable temporal lobe seizures and paroxysmal EEG activities. Epilepsia. 2000;41:158–69.

    CAS  PubMed  Google Scholar 

  370. Westin K, Lundstrom BN, Van Gompel J, et al. Neurophysiological effects of continuous cortical stimulation in epilepsy—spike and spontaneous ECoG activity. Clin Neurophysiol. 2019;130:38–45.

    PubMed  Google Scholar 

  371. Lundstrom BN, Gompel JV, Khadjevand F, et al. Chronic subthreshold cortical stimulation and stimulation-related EEG biomarkers for focal epilepsy. Brain Commun. 2019; https://doi.org/10.1093/braincomms/fcz010.

  372. Lundstrom BN, Gompel JV, Britton J, et al. Chronic subthreshold cortical stimulation to treat focal epilepsy. JAMA Neurol. 2016;73:1370–2.

    PubMed  Google Scholar 

  373. Kerezoudis P, Grewal SS, Stead M, et al. Chronic subthreshold cortical stimulation for adult drug-resistant focal epilepsy: safety, feasibility, and technique. J Neurosurg. 2018;129:533–43.

    PubMed  Google Scholar 

  374. Bourgeois M, Sainte-Rose C, Lellouch-Tubiana A, et al. Surgery of epilepsy associated with focal lesions in childhood. J Neurosurg. 1999;90:833–42.

    CAS  PubMed  Google Scholar 

  375. Cascino GD, Kelly PJ, Sharbrough FW, Hulihan JF, Hirschorn KA, Trenerry MR. Long-term follow-up of stereotactic lesionectomy in partial epilepsy: predictive factors and electroencephalographic results. Epilepsia. 1992;33:639–44.

    CAS  PubMed  Google Scholar 

  376. Pelliccia V, Deleo F, Gozzo F, et al. Early and late epilepsy surgery in focal epilepsies associated with long-term epilepsy-associated tumors. J Neurosurg. 2017;127(5):1147–52.

    PubMed  Google Scholar 

  377. Wellmer J. Lesion focused radiofrequency thermocoagulation of bottom-of-sulcus focal cortical dysplasia type IIb: Conceptional considerations with regard to the epileptogenic zone. Epilepsy Res. 2018;142:143–8.

    PubMed  Google Scholar 

  378. Fukuda M, Kameyama S, Wachi M, Tanaka R. Stereotaxy for hypothalamic hamartoma with intractable gelastic seizures: technical case report. Neurosurgery. 1999;44:1347–50.

    CAS  PubMed  Google Scholar 

  379. Kuzniecky R, Guthrie B, Mountz J, Bebin M, Faught E, Gilliam F, et al. Intrinsic epileptogenesis of hypothalamic hamartomas in gelastic epilepsy. Ann Neurol. 1997;42:60–7.

    CAS  PubMed  Google Scholar 

  380. Munari C, Kahane P, Francione S, Hoffmann D, Tassi L, Cusmai R, et al. Role of the hypothalamic hamartoma in the genesis of gelastic fits (a video-stereo-EEG study). Electroencephalogr Clin Neurophysiol. 1995;95:154–60.

    CAS  PubMed  Google Scholar 

  381. Calisto A, Dorfmuller G, Fohlen M, Bulteau C, Conti A, Delalande O. Endoscopic disconnection of hypothalamic hamartomas: safety and feasibility of robot-assisted, thulium laser-based procedures. J Neurosurg Pediatr. 2014;14:563–72.

    PubMed  Google Scholar 

  382. Delalande O, Fohlen M. Disconnecting surgical treatment of hypothalamic hamartoma in children and adults with refractory epilepsy and proposal of a new classification. Neurol Med Chir (Tokyo). 2003;43:61–8.

    Google Scholar 

  383. Drees C, Chapman K, Prenger E, Baxter L, Maganti R, Rekate H, et al. Seizure outcome and complications following hypothalamic hamartoma treatment in adults: endoscopic, open, and Gamma Knife procedures. J Neurosurg. 2012;117:255–61.

    PubMed  Google Scholar 

  384. Mittal S, Mittal M, Montes JL, Farmer JP, Andermann F. Hypothalamic hamartomas. Part 2. Surgical considerations and outcome. Neurosurg Focus. 2013;34(6):E7.

    PubMed  Google Scholar 

  385. Pati S, Abla AA, Rekate HL, Ng YT. Repeat surgery for hypothalamic hamartoma in refractory epilepsy. Neurosurg Focus. 2011;30(2):E3.

    PubMed  Google Scholar 

  386. Rekate HL, Feiz-Erfan I, Ng YT, Gonzalez LF, Kerrigan JF. Endoscopic surgery for hypothalamic hamartomas causing medically refractory gelastic epilepsy. Childs Nerv Syst. 2006;22:874–80.

    PubMed  Google Scholar 

  387. Wait SD, Abla AA, Killory BD, Nakaji P, Rekate HL. Surgical approaches to hypothalamic hamartomas. Neurosurg Focus. 2011;30(2):E2.

    PubMed  Google Scholar 

  388. Wellmer J, Parpaley Y, Rampp S, Popkirov S, Kugel H, Aydin Ü, Wolters CH, von Lehe M, Voges J. Lesion guided stereotactic radiofrequency thermocoagulation for palliative, in selected cases curative epilepsy surgery. Epilepsy Res. 2016;121:39–46.

    PubMed  Google Scholar 

  389. Quigg M, Harden C. Minimally invasive techniques for epilepsy surgery: stereotactic radiosurgery and other technologies. J Neurosurg. 2014;121(Suppl):232–40.

    PubMed  Google Scholar 

  390. Nádvorník P, Pogády J, Sramka M. Results of stereotaxic treatment in aggression syndrome. Cesk Psychiatry. 1973;69(6):357–62.

    Google Scholar 

  391. Spiegel EA, Wycis HT. Thalamic recordings in man with special reference to seizure discharges. EEG Clin Neurophysiol. 1950;2:23–7.

    Google Scholar 

  392. Flanigin HF, Nashold BS. Stereotactic lesions of the amygdala and hippocampus in epilepsy. Acta Neurochir. 1976;23:235–9.

    Google Scholar 

  393. Mundinger F, Becker P, Grolkner E. Late results of stereotactic surgery of epilepsy predominantly temporal lobe type. Acta Neurochir. 1976;23:177–82.

    Google Scholar 

  394. Umbach W. Long-term results of fornicotomy for temporal epilepsy. Confin Neurol. 1966;27:121–3. https://doi.org/10.1159/000103941.

    Article  CAS  PubMed  Google Scholar 

  395. Umbach W. Elektrophysiologische und vegetative Phänomene bei stereotaktischen Hirnoperationen. Heidelberg: Springer-Verlag; 1966.

    Google Scholar 

  396. Narabayashi H, Nagao T, Saito Y, Yoshida M, Nagahata M. Stereotaxic amygdalotomy for behavior disorders. Arch Neurol. 1963;9:1–16. https://doi.org/10.1001/archneur.1963.00460070011001.

    Article  CAS  PubMed  Google Scholar 

  397. Heimburger RF, Whitlock CC, Kalsbeck JE. Stereotaxic amygdalotomy for epilepsy with aggressive behavior. JAMA. 1966;198:741–5. https://doi.org/10.1001/jama.1966.03110200097026.

    Article  CAS  PubMed  Google Scholar 

  398. Schwab RS, Sweet WH, Mark VH, Kjellberg RN, Ervin FR. Treatment of intractable temporal lobe epilepsy by stereotactic amygdala lesions. Trans Am Neurol Assoc. 1965;90:12–9.

    CAS  PubMed  Google Scholar 

  399. Nádvorník P, Šramka M. Anatomical considerations for the stereotaxic longitudinal hippocampectomy. Stereotact Funct Neurosurg. 1974;36:177–81. https://doi.org/10.1159/000102792.

    Article  Google Scholar 

  400. Nádvorník P, Šramka M. Longitudinal hippocampectomy. A new stereotaxic approach to the gyrus hippocampi. Confin Neurol. 1975;37(1–3):245–8.

    PubMed  Google Scholar 

  401. Bouchard G, Umbach W. Indications for open and stereotactic brain surgery in epilepsy. In: Present limits of neurosurgery. Amsterdam: Excerpta Medica; 1972. p. 403–6.

    Google Scholar 

  402. Heimburger RF, Small IF, Small JG, Milstein V, Moore D. Stereotactic amygdalotomy for convulsive and behavioral disorders. Stereotact Funct Neurosurg. 1978;41:43–51. https://doi.org/10.1159/000102399.

    Article  CAS  Google Scholar 

  403. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011;365:919–26. https://doi.org/10.1056/NEJMra1004418.

    Article  CAS  PubMed  Google Scholar 

  404. Narabayashi H, Mizutani T. Epileptic seizures and the stereotaxic amygdalotomy. Confin Neurol. 1970;32(2):289–97. https://doi.org/10.1159/000103429.

    Article  CAS  PubMed  Google Scholar 

  405. Schaltenbrand G, Spuler H, Nadjmi M, Hopf HC, Wahren W. Die stereotaktische Behandlung der Epilepsien. Stereotact Funct Neurosurg. 1966;27:111–3. https://doi.org/10.1159/000103939.

    Article  CAS  Google Scholar 

  406. Talairach J, Szikla G. [Amygdalo-hippocampal partial destruction by yttrium-90 in the treatment of certain epilepsies of rhinencephalic manifestation]. Neurochirurgie. 1965;11:233–40.

    Google Scholar 

  407. Vaernet K. Stereotaxic amygdalotomy in temporal lobe epilepsy. Confin Neurol. 1972;34:4579788. https://doi.org/10.1159/000103055.

    Article  Google Scholar 

  408. Parrent AG, Lozano AM. Stereotactic surgery for temporal lobe epilepsy. Can J Neurol Sci. 2000;27(Suppl 1):S79–84; discussion S92–6. https://doi.org/10.1017/S0317167100000718.

    Article  PubMed  Google Scholar 

  409. Parrent AG, Blume WT. Stereotactic amygdalohippocampotomy for the treatment of medial temporal lobe epilepsy. Epilepsia. 1999;40:1408–16. https://doi.org/10.1111/j.1528-1157.1999.tb02013.

    Article  CAS  PubMed  Google Scholar 

  410. Mempel E, Witkiewicz B, Stadnicki R, Luczywek E, Kuciński L, Pawłowski G, et al. The effect of medial amygdalotomy and anterior hippocampotomy on behavior and seizures in epileptic patients. Acta Neurochir Suppl (Wien). 1980;30:161–7. https://doi.org/10.1007/978-3-7091-8592-6-20.

    Article  CAS  Google Scholar 

  411. Voges J, Wellmer J, Büntjen L, Schmitt FC. Radiofrequency thermoablation—the neurosurgical perspective. Z Epileptol. 2017;30:98–104.

    Google Scholar 

  412. Vojtech Z, Malíková H, Krámská L, Liščák R, Vladyka V. MRI-guided stereotactic amygdalohippocampectomy: a single center experience. Neuropsychiatr Dis Treat. 2015;11:359–74.

    PubMed  PubMed Central  Google Scholar 

  413. Missios S, Bekelis K, Barnett GH. Renaissance of laser interstitial thermal ablation. Neurosurg Focus. 2015;38:E13.

    PubMed  Google Scholar 

  414. Monteith S, Sheehan J, Medel R, Wintermark M, Eames M, Snell J, et al. Potential intracranial applications of magnetic resonance-guided focused ultrasound surgery. J Neurosurg. 2013;118:215–21.

    PubMed  Google Scholar 

  415. Monteith S, Snell J, Eames M, Kassell NF, Kelly E, Gwinn R. Transcranial magnetic resonance-guided focused ultrasound for temporal lobe epilepsy: a laboratory feasibility study. J Neurosurg. 2016;125(6):1557–64.

    PubMed  Google Scholar 

  416. Esquenazi Y, Kalamangalam GP, Slater JD, Knowlton RC, Friedman E, Morris SA, et al. Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy Res. 2014;108:547–54.

    PubMed  Google Scholar 

  417. Patil AA, Andrews R, Torkelson R. Minimally invasive surgical approach for intractable seizure. Stereotact Funct Neurosurg. 1995;65:86–9. https://doi.org/10.1159/000098902.

    Article  CAS  PubMed  Google Scholar 

  418. Nadvornik P, Sramka M. Longitudinal hippocampectomy. A new stereotaxic approach to the gyrus hippocampi. Confin Neurol. 1975;37(1–3):245–8.

    CAS  PubMed  Google Scholar 

  419. Gonzalez-Martinez J, Vadera S, Mullin J, Enatsu R, Alexopoulos AV, Patwardhan R, Bingaman W, Najm I. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10(Suppl 2):167–72; discussion 172–3. https://doi.org/10.1227/NEU.0000000000000286.

    Article  PubMed  Google Scholar 

  420. Wu C, Boorman DW, Gorniak RJ, Farrell CJ, Evans JJ, Sharan AD. The effects of anatomic variations on stereotactic laser amygdalohippocampectomy and a proposed protocol for trajectory planning. Neurosurgery. 2015;11(Suppl. 2):345–56; discussion 356–7.

    PubMed  Google Scholar 

  421. Homma J, Kameyama S, Masuda H, Ueno T, Fujimoto A, Oishi M, et al. Stereotactic radiofrequency thermocoagulation for hypothalamic hamartoma with intractable gelastic seizures. Epilepsy Res. 2007;76:15–21. https://doi.org/10.1016/j.eplepsyres.2007.06.007.

    Article  PubMed  Google Scholar 

  422. Kameyama S, Murakami H, Masuda H, Sugiyama I. Minimally invasive magnetic resonance imaging-guided stereotactic radiofrequency thermocoagulation for epileptogenic hypothalamic hamartomas. Neurosurgery. 2009;65:438–49.

    PubMed  Google Scholar 

  423. Kuzniecky RI, Guthrie BL. Stereotactic surgical approach to hypothalamic hamartomas. Epileptic Disord. 2003;5:275–80.

    PubMed  Google Scholar 

  424. Wellmer J, Kopitzki K, Voges J. Lesion focused stereotactic thermo-coagulation of focal cortical dysplasia IIB: A new approach to epilepsy surgery? Seizure. 2014;23:475–9.

    PubMed  Google Scholar 

  425. Bourdillon P, Rheims S, Catenoix H, et al. Surgical techniques: stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC). Eur J Epilepsy. 2019; https://doi.org/10.1016/j.seizure.2019.01.021.

  426. Guénot M, Isnard J, Ryvlvlin P, Fischer C, Mauguiere F, Sindou M. SEEG-guided RF thermocoagulation of epileptic foci: feasibility, safety, and preliminary results. Epilepsia. 2004;45:1368–74.

    PubMed  Google Scholar 

  427. Bourdillon P, Isnard J, Catenoix H, Montavont A, Rheims S, Ryvlin P, et al. Stereo electroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) in drug-resistant focal epilepsy: results from a 10-year experience. Epilepsia. 2017;58:85–93. https://doi.org/10.1111/epi.13616.

    Article  PubMed  Google Scholar 

  428. Chipaux M, Taussig D, Dorfmuller G, Dorison N, Tisdall MM, Boyd SG, Thornton R, Eltze C, Fohlen M, Cross HJ, Ferrand-Sorbets S. SEEG-guided radiofrequency thermocoagulation of epileptic foci in the paediatric population: feasibility, safety and efficacy. Seizure. 2019;70:63–70. https://doi.org/10.1016/j.seizure.2019.07.004.

    Article  PubMed  Google Scholar 

  429. Fan X, Shan Y, Lu C, et al. Optimized SEEG-guided radiofrequency thermocoagulation for mesial temporal lobe epilepsy with hippocampal sclerosis. Eur J Epilepsy. 2019;71:304–11.

    Google Scholar 

  430. Bourdillon P, Cucherat M, Isnard J, Ostrowsky-Coste K, Catenoix H, Guénot M, et al. SEEG-guided radiofrequency thermocoagulations in patients with focal epilepsy: a systematic review and meta-analysis. Epilepsia. 2018;59(12):2296–304.

    PubMed  Google Scholar 

  431. Dimova P, de Palma L, Job-Chapron AS, et al. Radiofrequency thermocoagulation of the seizure-onset zone during stereoelectroencephalography. Epilepsia. 2017;58(3):381–92.

    PubMed  Google Scholar 

  432. Catenoix H, Bourdillon P, Guénot M, Isnard J. The combination of stereo-EEG and radiofrequency ablation. Epilepsy Res. 2018;142:117–20.

    PubMed  Google Scholar 

  433. Kalina M, Lisck R, Vojtech Z, Adámková E, Procházka T, Marecková I, et al. Stereotactic amygdalohippocampectomy for temporal lobe epilepsy: promising results in 16 patients. Epileptic Disord. 2007;9(Suppl 1):S68–74. https://doi.org/10.1684/epd.2008.0158.

    Article  PubMed  Google Scholar 

  434. Liscak R, Malikova H, Kalina M, Vojtech Z, Prochazka T, Marusic P, et al. Stereotactic radiofrequency amygdalohippocampectomy in the treatment of mesial temporal lobe epilepsy. Acta Neurochir (Wien). 2010;152:1291–8.

    Google Scholar 

  435. Malikova H, Vojtech Z, Liscak R, Prochazka T, Vymazal J, Vladyka V, et al. Stereotactic radiofrequency amygdalohippocampectomy for the treatment of mesial temporal lobe epilepsy: correlation of MRI with clinical seizure outcome. Epilepsy Res. 2009;83:235–42. https://doi.org/10.1016/j.eplepsyres.2008.11.013.

    Article  PubMed  Google Scholar 

  436. Patil AA, Andrews R, Torkelson R. Stereotactic volumetric radiofrequency lesioning of intracranial structures for control of intractable seizures. Stereotact Funct Neurosurg. 1995;64:123–33.

    CAS  PubMed  Google Scholar 

  437. Malikova H, Liscak R, Vojtech Z, Prochazka T, Vymazal J, Vladyka V, et al. Stereotactic radiofrequency amygdalohippocampectomy: does reduction of entorhinal and perirhinal cortices influence good clinical seizure outcome? Epilepsia. 2011;52:932–40. https://doi.org/10.1111/j.1528-1167.2011.03048.

    Article  PubMed  Google Scholar 

  438. Vojtech Z, Kramska L, Malikova H, Seltenreichova K, Prochazka T, Kalina M, et al. Cognitive outcome after stereotactic amygdalohippocampectomy. Seizure. 2012;21:327–33. https://doi.org/10.1016/j.seizure.2012.02.008.

    Article  PubMed  Google Scholar 

  439. Vojtech Z, Malikova H, Kramska L, Anyz J, Syrucek M, Zamecnik J, et al. Long-term seizure outcome after stereotactic amygdalohippocampectomy. Acta Neurochir (Wien). 2014;156:1529–37. https://doi.org/10.1007/s00701-014-2126-5.

    Article  Google Scholar 

  440. Malikova H, Kramska L, Liscak R, Vojtech Z, Prochazka T, Mareckova I, et al. Stereotactic radiofrequency amygdalohippocampectomy for the treatment of temporal lobe epilepsy: do good neuropsychological and seizure outcomes correlate with hippocampal volume reduction? Epilepsy Res. 2012;102:34–44. https://doi.org/10.1016/j.eplepsyres.2012.04.017.

    Article  PubMed  Google Scholar 

  441. Malikova H, Kramska L, Vojtech Z, Lukavsky J, Liscak R. Stereotactic radiofrequency amygdalohippocampectomy: two years of good neuro-psychological outcomes. Epilepsy Res. 2013;106:423–32. https://doi.org/10.1016/j.eplepsyres.2013.07.009.

    Article  PubMed  Google Scholar 

  442. Cossu M, Fuschillo D, Cardinale F, Castana L, Francione S, Nobili L, et al. Stereo-EEG-guided radio-frequency thermo-coagulations of epileptogenic grey-matter nodular heterotopy. J Neurol Neurosurg Psychiatry. 2014;85:611–7.

    PubMed  Google Scholar 

  443. Wu Z, Zhao Q, Tian Z, Zhang J, Xiao X, Lin H, et al. Efficacy and safety of a new robot-assisted stereotactic system for radiofrequency thermocoagulation in patients with temporal lobe epilepsy. Exp Ther Med. 2014;7:1728–32. https://doi.org/10.3892/etm.2014.1620.

    Article  PubMed  PubMed Central  Google Scholar 

  444. Malikova H, Kramska L, Vojtech Z, Sroubek J, Lukavsky J, Liscak R. Relationship between remnant hippocampus and amygdala and memory outcomes after stereotactic surgery for mesial temporal lobe epilepsy. Neuropsychiatr Dis Treat. 2015;11:2927–33. https://doi.org/10.2147/NDT.S95497.

    Article  PubMed  PubMed Central  Google Scholar 

  445. Lee C-Y, Li H-T, Wu T, et al. Efficacy of limited hippocampal radiofrequency thermocoagulation for mesial temporal lobe epilepsy. J Neurosurg. 2018; https://doi.org/10.3171/2018.4.JNS184.

  446. Blume WT, Parrent AG, Kaibara M. Stereotactic amygdalohippocampotomy and mesial temporal spikes. Epilepsia. 1997;38:930–6.

    CAS  PubMed  Google Scholar 

  447. Yang W-D, Yu Q, Zhang J-N, Shen C-H, Wang F-L, Cui L-Y, et al. [Stereotactic combined amygdala and hippocampus lesions for treatment of medial temporal lobe epilepsy]. Zhonghua Wai Ke Za Zhi. 2005;43:616–9. https://doi.org/10.3760/j.issn.0529-5815.2005.09.019.

  448. Kameyama S, Shirozu H, Masuda H, Ito Y, Sonoda M, Akazawa K. MRI-guided stereotactic radiofrequency thermocoagulation for 100 hypothalamic hamartomas. J Neurosurg. 2016;124:1503–12.

    PubMed  Google Scholar 

  449. Gollwitzer S, Valente I, Rodionov R, Scott C, Ritter LM, Wehner T, Hamer HM, Bartolomei F, Diehl B. Visual and semiautomated evaluation of epileptogenicity in focal cortical dysplasias—an intracranial EEG study. Epilepsy Behav. 2016;58:69–75.

    PubMed  Google Scholar 

  450. Wagner J, Urbach H, Niehusmann P, von Lehe M, Elger CE, Wellmer J. Focal cortical dysplasia type IIb: completeness of cortical, not subcortical, resection is necessary for seizure freedom. Epilepsia. 2011;52:1418–24.

    PubMed  Google Scholar 

  451. Cossu M, Fuschillo D, Casaceli G, Pelliccia V, Castana L, Mai R, et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg. 2015;123:1358–67. https://doi.org/10.3171/2014.12.JNS141968.

    Article  PubMed  Google Scholar 

  452. Schmitt FC, Voges J, Buentjen L, Woermann F, Pannek HW, Skalej M, Heinze HJ, Ebner A. Radiofrequency lesioning for epileptogenic periventricular nodular heterotopia: a rational approach. Epilepsia. 2011;52:101–5.

    Google Scholar 

  453. Grewal SS, Tatum WO. Laser thermal ablation in epilepsy. Expert Rev Neurother. 2019; https://doi.org/10.1080/14737175.2019.1650642.

  454. Heppner F. Experiences with the CO2 laser in surgery of the nervous system. Zentralbl Neurochir. 1979;40:297–301, 303–4.

    CAS  PubMed  Google Scholar 

  455. Rossomoff HL, Carroll F. Reaction of neoplasm and brain to laser. Arch Neurol. 1966;14(2):143–8.

    Google Scholar 

  456. Ryan RW, Spetzler RF, Preul MC. Aura of technology and the cutting edge: a history of lasers in neurosurgery. Neurosurg Focus. 2009;27(3):E6.

    PubMed  Google Scholar 

  457. Stellar SPT, Bredemeier HC. Lasers in surgery. In: Wolbarsht ML, editor. Laser applications in medicine and biology, vol. 2. New York: Springer; 1974. p. 241–93.

    Google Scholar 

  458. Curry DJ, Gowda A, McNichols RJ, Wilfong AA. MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav. 2012;24:408–14.

    PubMed  Google Scholar 

  459. Karsy M, Guan J, Ducis K, Bollo RJ. Emerging surgical therapies in the treatment of pediatric epilepsy. Transl Pediatr. 2016;5:67–78.

    PubMed  PubMed Central  Google Scholar 

  460. Kelly PJ, Sharbrough FW, Kall BA, Goerss SJ. Magnetic resonance imaging-based computer-assisted stereotactic resection of the hippocampus and amygdala in patients with temporal lobe epilepsy. Mayo Clin Proc. 1987;62:103–8.

    CAS  PubMed  Google Scholar 

  461. Lewis EC, Weil AG, Duchowny M, Bhatia S, Ragheb J, Miller I. MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia. 2015;56:1590–8.

    PubMed  Google Scholar 

  462. Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg. 1990;55:501–5.

    Google Scholar 

  463. Tovar-Spinoza Z, Carter D, Ferrone D, Eksioglu Y, Huckins S. The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst. 2013;29:2089–94.

    PubMed  Google Scholar 

  464. Buckley RT, Wang AC, Miller JW, Novotny EJ, Ojemann JG. Stereotactic laser ablation for hypothalamic and deep intraventricular lesions. Neurosurg Focus. 2016;41:E10. https://doi.org/10.3171/2016.7.FOCUS16236.

    Article  PubMed  Google Scholar 

  465. Buckley R, Estronza-Ojeda S, Ojemann JG. Laser ablation in pediatric epilepsy. Neurosurg Clin N Am. 2016;27:69–78.

    PubMed  Google Scholar 

  466. Bettag M, Ulrich F, Schober R, Fürst G, Langen KJ, Sabel M, et al. Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl (Wien). 1991;52:81–3.

    CAS  Google Scholar 

  467. Fujishima I, Ryu H, Uemura K, Sakai T, Nakajima S, Sugiyama K, et al. Experimental study of deep brain radiation with the Nd-YAG laser: a possible new treatment for deep-seated brain tumor. Neurol Med Chir (Tokyo). 1986;26:621–7.

    CAS  Google Scholar 

  468. Kahn T, Bettag M, Ulrich F, Schwarzmaier HJ, Schober R, Furst G, et al. MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr. 1994;18:519–32.

    CAS  PubMed  Google Scholar 

  469. Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol. 2015;36:1998–2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  470. Sakai T, Fujishima I, Sugiyama K, Ryu H, Uemura K. Interstitial laserthermia in neurosurgery. J Clin Laser Med Surg. 1992;10:37–40.

    CAS  PubMed  Google Scholar 

  471. Salem U, Kumar VA, Madewell JE, et al. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging. 2019;19:65. https://doi.org/10.1186/s40644-019-0250-4.

    Article  PubMed  PubMed Central  Google Scholar 

  472. Patel P, Patel NV, Danish SF. Intracranial MR-guided laser-induced thermal therapy: single-center experience with the visualase thermal therapy system. J Neurosurg. 2016;125:853–60.

    PubMed  Google Scholar 

  473. Sundararajan SH, Belani P, Danish S, Keller I. Early MRI characteristics after MRI-guided laser-assisted cingulotomy for intractable pain control. AJNR Am J Neuroradiol. 2015;36:1283–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  474. Li K, Vakharia VN, Sparks R, et al. Optimizing trajectories for cranial laser interstitial thermal therapy using computer-assisted planning: a machine learning approach. Neurotherapeutics. 2019;16(2):182–91.

    CAS  PubMed  Google Scholar 

  475. Shimamoto S, Wu C, Sperling MR. Laser interstitial thermal therapy in drug-resistant epilepsy. Curr Opin Neurol. 2019;32(2):237–45. https://doi.org/10.1097/WCO. PMID:30694919

    Article  PubMed  Google Scholar 

  476. LaRiviere MJ, Gross RE. Stereotactic laser ablation for medically intractable epilepsy: the next generation of minimally invasive epilepsy surgery. Front Surg. 2016; https://doi.org/10.3389/fsurg.2016.00064.

  477. Gross RE, Stern MA, Willie JT, Fasano RE, Saindane AM, Soares BP, et al. Stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Ann Neurol. 2018;83:575–87.

    PubMed  PubMed Central  Google Scholar 

  478. Hoppe C, Witt J-A, Helmstaedter C, et al. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure. 2017;48:45–52.

    PubMed  Google Scholar 

  479. Hoppe C, Witt J-A, Helmstaedter C, Gasser T, Vatter H, Elger C-E. Stereotaktische Laserthermokoagulation in der Epilepsiechirurgie. Nervenarzt. 2017; https://doi.org/10.1007/s00115-017-0283-5.

  480. Hoppe C, Helmstaedter C. Laser interstitial thermotherapy (LiTT) in pediatric epilepsy surgery. Seizure. 2018; https://doi.org/10.1016/j.seizure.2017.04.002.

  481. Abel TJ, Kawasaki H, Barrash J. Naming and recognition after laser amygdalohippocampotomy: is the hippocampus involved? Epilepsia. 2015;56:1317.

    PubMed  PubMed Central  Google Scholar 

  482. Attiah MA, Paulo DL, Danish SF, Stein SC, Mani R. Anterior temporal lobectomy compared with laser thermal hippocampectomy for mesial temporal epilepsy: a threshold analysis study. Epilepsy Res. 2015;115:1–7.

    PubMed  Google Scholar 

  483. Drane DL, Loring DW, Voets NL, Price M, Ojemann JG, Willie JT, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56:101–13.

    PubMed  Google Scholar 

  484. Dredla BK, Lucas JA, Wharen RE, Tatum WO. Neurocognitive outcome following stereotactic laser ablation in two patients with MRI-/PET+ mTLE. Epilepsy Behav. 2016;56:44–7.

    PubMed  Google Scholar 

  485. Gross RE, Mahmoudi B, Riley JP. Less is more: novel less-invasive surgical techniques for mesial temporal lobe epilepsy that minimize cognitive impairment. Curr Opin Neurol. 2015;28:182–91.

    PubMed  Google Scholar 

  486. Gross RE, Willie JT, Drane DL. The role of stereotactic laser amygdalohippocampotomy in mesial temporal lobe epilepsy. Neurosurg Clin N Am. 2016;27:37–50.

    PubMed  Google Scholar 

  487. Jobst BC. Equal but different? MRI-guided stereotactic laser amygdalohippocampectomy and traditional temporal lobe surgery. Epilepsy Curr. 2015;15:250–2.

    PubMed  PubMed Central  Google Scholar 

  488. Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57:325–34.

    PubMed  Google Scholar 

  489. Meng Y, Suppiah S, Mansouri A. Journal club: real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery. 2015;77:307–9.

    PubMed  Google Scholar 

  490. Waseem H, Osborn KE, Schoenberg MR, Kelley V, Bozorg A, Cabello D, et al. Laser ablation therapy: an alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50. Epilepsy Behav. 2015;51:152–7.

    PubMed  Google Scholar 

  491. Willie JT, Laxpati NG, Drane DL, Gowda A, Appin C, Hao C, et al. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery. 2014;74:569–84; discussion 584.

    PubMed  Google Scholar 

  492. Jermakowicz WJ, Kanner AM, Sur S, Bermudez C, D’Haese PF, Kolcun JP, et al. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017;58(5):801–10.

    PubMed  PubMed Central  Google Scholar 

  493. Youngerman BE, Oh JY, Anbarasan D, et al. Laser ablation is effective for temporal lobe epilepsy with and without mesial temporal sclerosis if hippocampal seizure onsets are localized by stereoelectroencephalography. Epilepsia. 2018;59:595–606.

    PubMed  Google Scholar 

  494. Donos C, Breier J, Friedman E, et al. Laser ablation for mesial temporal lobe epilepsy: surgical and cognitive outcomes with and without mesial temporal sclerosis. Epilepsia. 2018;59:1421–32.

    PubMed  Google Scholar 

  495. Grewal SS, Zimmerman RS, Worrell G, et al. Laser ablation for mesial temporal epilepsy: a multi-site, single institutional series. J Neurosurg. 2018; https://doi.org/10.3171/2018.2.JNS171873.

  496. Grewal SS, Alvi MA, Lu VM, et al. Magnetic resonance-guided laser interstitial thermal therapy versus stereotactic radiosurgery for medically intractable temporal lobe epilepsy: a systematic review and meta-analysis of seizure outcomes and complications. World Neurosurg. 2018; https://doi.org/10.1016/j.wneu.2018.08.227.

  497. Tao JX, Wu S, Lacy M, Rose S, Issa NP, Yang CW, et al. Stereotactic EEG-guided laser interstitial thermal therapy for mesial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2018;89:542–8.

    PubMed  Google Scholar 

  498. Vakharia VN, Sparks R, Kuo L, et al. Automated trajectory planning for laser interstitial thermal therapy (LiTT) in mesial temporal lobe epilepsy. Epilepsia. 2018;59(4):814–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  499. Wu C, Jermakovicz WJ, Chakravorti S, et al. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients. Epilepsia. 2019;60(6):1171–83.

    PubMed  PubMed Central  Google Scholar 

  500. Radhakrishnan A, Menon R, Thomas SV, Abraham M, Vilanilam G, Kesavadas C, et al. “Time is Brain”—how early should surgery be done in drug-resistant TLE? Acta Neurol Scand. 2018;138:531–40.

    CAS  PubMed  Google Scholar 

  501. Sun Z, Zuo H, Yuan D, Sun Y, Zhang K, Cui Z, et al. Predictors of prognosis in patients with temporal lobe epilepsy after anterior temporal lobectomy. Exp Ther Med. 2015;10:1896–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  502. Ellis JA, Mejia Munne JC, Wang SH, McBrian DK, Akman CI, Feldstein NA, et al. Staged laser interstitial thermal therapy and topectomy for complete obliteration of complex focal cortical dysplasias. J Clin Neurosci. 2016;31:224–8.

    PubMed  Google Scholar 

  503. Sperling MR, Gross RE, Alvarez GE, et al. Stereotactic laser ablation for mesial temporal lobe epilepsy: a prospective, multicenter, single‐arm study. Epilepsia. 2020; https://doi.org/10.1111/epi.16529.

  504. Drane DL. MRI-guided stereotactic laser ablation for epilepsy surgery: promising preliminary results for cognitive outcome. Epilepsy Res. 2018;142:170–5.

    PubMed  Google Scholar 

  505. Brandmeir N, Acharya V, Sather M. Robot assisted stereotactic laser ablation for a radiosurgery resistant hypothalamic hamartoma. Cureus. 2016;8:e581.

    PubMed  PubMed Central  Google Scholar 

  506. Burrows AM, Marsh WR, Worrell G, Woodrum DA, Pollock BE, Gorny KR, et al. Magnetic resonance imaging-guided laser interstitial thermal therapy for previously treated hypothalamic hamartomas. Neurosurg Focus. 2016;41:E8.

    PubMed  Google Scholar 

  507. Rolston JD, Chang EF. Stereotactic laser ablation for hypothalamic hamartoma. Neurosurg Clin N Am. 2016;27:59–67.

    PubMed  Google Scholar 

  508. Wilfong AA, Curry DJ. Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia. 2013;54(Suppl. 9):109–14.

    PubMed  Google Scholar 

  509. Wright JM, Staudt MD, Alonso A, et al. A novel use of the NeuroBlate SideFire probe for minimally invasive disconnection of a hypothalamic hamartoma in a child with gelastic seizures. J Neurosurg Pediatr. 2018;21:302–7.

    PubMed  Google Scholar 

  510. Zubkov S, Del Bene VA, MacAllister WS, Shepherd TM. Disabling amnestic syndrome following stereotactic laser ablation of a hypothalamic hamartoma in a patient with a prior temporal lobectomy. Epilepsy Behav Case Rep. 2015;4:60–2.

    PubMed  PubMed Central  Google Scholar 

  511. Curry DJ, Raskin J, Ali I, Wilfong AA. MR-guided laser ablation for the treatment of hypothalamic hamartomas. Epilepsy Res. 2018;142:131–4.

    PubMed  Google Scholar 

  512. Xu DS, Chen T, Hlubek RJ, et al. Magnetic resonance imaging-guided laser interstitial thermal therapy for the treatment of hypothalamic hamartomas: a retrospective review. Neurosurgery. 2018;83:1183–92.

    PubMed  Google Scholar 

  513. Boerwinkle VL, Foldes ST, Torrisi SJ, et al. Subcentimeter epilepsy surgery targets by resting state functional magnetic resonance imaging can improve outcomes in hypothalamic hamartoma. Epilepsia. 2018;59(12):2284–95.

    PubMed  Google Scholar 

  514. Clarke DF, Tindall K, Lee M, Patel B. Bilateral occipital dysplasia, seizure identification, and ablation: a novel surgical technique. Epileptic Disord. 2014;16:238–43.

    PubMed  Google Scholar 

  515. Devine IM, Burrell CJ, Shih JJ. Curative laser thermoablation of epilepsy secondary to bottom-of-sulcus dysplasia near eloquent cortex. Seizure. 2016;34:35–7.

    PubMed  Google Scholar 

  516. Thompson SA, Kalamangalam GP, Tandon N. Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure. 2016;41:211–6.

    PubMed  Google Scholar 

  517. Dadey DY, Kamath AA, Leuthardt EC, Smyth MD. Laser interstitial thermal therapy for subependymal giant cell astrocytoma: technical case report. Neurosurg Focus. 2016;41:E9.

    PubMed  Google Scholar 

  518. McCracken DJ, Willie J, Fernald BA, Saindane AM, Drane DL, Barrow DL, et al. Magnetic resonance thermometry-guided stereotactic laser ablation of cavernous malformations in drug-resistant epilepsy: imaging and clinical results. Oper Neurosurg. 2016;12:39–48.

    Google Scholar 

  519. Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery. 2013;73:1007–17.

    PubMed  Google Scholar 

  520. Hawasli AH, Bandt SK, Hogan RE, Werner N, Leuthardt EC. Laser ablation as treatment strategy for medically refractory dominant insular epilepsy: therapeutic and functional considerations. Stereotact Funct Neurosurg. 2014;92:397–404.

    PubMed  Google Scholar 

  521. Cobourn K, Fayed I, Keating RF, Oluigbo CO. Early outcomes of stereoelectroencephalography followed by MR-guided laser interstitial thermal therapy: a paradigm for minimally invasive epilepsy surgery. Neurosurg Focus. 2018;45:1–9.

    Google Scholar 

  522. Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am. 2005;13(3):545–60.

    PubMed  Google Scholar 

  523. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66:323–32.

    PubMed  Google Scholar 

  524. Elias WJ, Huss D, Voss T, Loomba J, Khaled M, Zadicario E, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013;369:640–8.

    CAS  PubMed  Google Scholar 

  525. Krishna V, Sammartino F, Cosgrove R, et al. Predictors of outcomes after focused ultrasound thalamotomy. Neurosurgery. 2019; https://doi.org/10.1093/neuros/nyz417.

  526. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol. 2009;66:858–61.

    PubMed  Google Scholar 

  527. McDonell J, Patel N, Fischer G, et al. Robotic assisted MRI-guided interventional Interstitial MR guided focused ultrasound ablation in a swine model. Neurosurgery. 2018; https://doi.org/10.1093/neuros/nyy266.

  528. Parker WE, Weidman EK, Chazen JL, et al. Magnetic resonance–guided focused ultrasound for ablation of mesial temporal epilepsy circuits: modeling and theoretical feasibility of a novel noninvasive approach. J Neurosurg. 2019; https://doi.org/10.3171/2019.4.JNS182694.

  529. Ranjan M, Boutet A, Bhatia S, et al. Neuromodulation beyond neurostimulation for epilepsy: scope for focused ultrasound. Expert Rev Neurother. 2019; https://doi.org/10.1080/14737175.2019.1635013.

  530. Foley JL, Little JW, Vaezy S. Effects of high-intensity focused ultrasound on nerve conduction. Muscle Nerve. 2008;37(2):241–50.

    PubMed  Google Scholar 

  531. Lipsman N, Meng Y, Bethune AJ, et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun. 2018;9(1):2336.

    PubMed  PubMed Central  Google Scholar 

  532. Leksell L. The stereotactic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316–9.

    CAS  PubMed  Google Scholar 

  533. Leksell L. Stereotactic radiosurgery in trigeminal neuralgia. Acta Chir Scand. 1971;137:311–4.

    CAS  PubMed  Google Scholar 

  534. Leksell L. Stereotaxis and radiosurgery. An operative system. Springfield, IL: Thomas CC; 1971.

    Google Scholar 

  535. Talairach J, Bancaud J, Szikla G, et al. Approche nouvelle de la neurochirurgie de l´épilepsie. Méthodologie stéréotaxique et résultants thérapeutiques. Neurochirurgie. 1974;20:92–8.

    Google Scholar 

  536. Heikkinen ER, Konnov B, Melnikow L. Relief of epilepsy by radiosurgery of cerebral arteriovenous malformations. Stereotact Funct Neurosurg. 1989;53:157–66.

    CAS  PubMed  Google Scholar 

  537. Rogers L, Morris H, Lupica K. Effect of cranial irradiation on seizure frequency in adults with low-grad astrocytoma and medically intractable epilepsy. Neurology. 1993;43:1599–601.

    CAS  PubMed  Google Scholar 

  538. Rossi G, Scerrati M, Roselli R. Epileptogenic cerebral low grade tumors: effect of interstitial stereotactic irradiation on seizures. Appl Neurophysiol. 1985;48:127–32.

    CAS  PubMed  Google Scholar 

  539. Steiner L, Lindquist C, Adler J, Torner J, Alves W, Steiner M. Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg. 1992;77:1–8.

    CAS  PubMed  Google Scholar 

  540. Lindquist C, Kilström L, Hellstrand E. Functional neurosurgery—a future for the Gamma Knife? Stereotact Funct Neurosurg. 1991;57:72–81.

    CAS  PubMed  Google Scholar 

  541. Whang CJ, Kwon Y. Long-term follow-up of stereotactic Gamma Knife radiosurgery in epilepsy. Stereotact Funct Neurosurg. 1996;66:349–56.

    PubMed  Google Scholar 

  542. Barcia Salorio JL, Roldan P, Hernandez G, et al. Radiosurgery treatment of epilepsy. Appl Neurophysiol. 1985;48:400–3.

    CAS  PubMed  Google Scholar 

  543. Gaffey CT, Monotoya V, Lyman J, et al. Restriction of the spread of epileptic discharges in cats by mean of Bragg Peak intracranial irradiation. Int J Appl Radiat Isot. 1981;32:779–87.

    CAS  PubMed  Google Scholar 

  544. Chen ZF, Kamiryo T, Henson SL, et al. Anticonvulsant effects of gamma surgery in a model of chronic spontaneous limbic epilepsy in rats. J Neurosurg. 2000;94:270–80.

    Google Scholar 

  545. Maesawa S, Kondziolka D, Dixon C, et al. Subnecrotic stereotactic radiosurgery controlling epilepsy produced by kainic acid injection in rats. J Neurosurg. 2000;93:1033–40.

    CAS  PubMed  Google Scholar 

  546. Mori Y, Kondziolka D, Balzer J, et al. Effects of stereotactic radiosurgery on an animal model of hippocampal epilepsy. Neurosurgery. 2000;46:157–65.

    CAS  PubMed  Google Scholar 

  547. Boström JP, Delev D, Quesada C, Widman G, Vatter H, Elger CE, Surges R. Low-dose radiosurgery or hypofractionated stereotactic radiotherapy as treatment option in refractory epilepsy due to epileptogenic lesions in eloquent areas—preliminary report of feasibility and safety. Seizure. 2016;36:57–62.

    PubMed  Google Scholar 

  548. Quigg M, Rolston J, Barbaro NM. Radiosurgery for epilepsy: clinical experience and potential antiepileptic mechanisms. Epilepsia. 2012;53(1):7–15.

    PubMed  Google Scholar 

  549. Régis J, Carron R, Park M. Is radiosurgery a neuromodulation therapy? A 2009 Fabrikant award lecture. J Neurooncol. 2010;98(2):155–62.

    PubMed  Google Scholar 

  550. Barbaro NM, Quigg M, Broshek DK, Ward MM, Lamborn KR, Laxer KD, Larson DA, Dillon W, Verhey L, Garcia P, Steiner L, Heck C, Kondziolka D, Beach R, Olivero W, Witt TC, Salanova V, Goodman R. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memory. Ann Neurol. 2009;65:167–75. https://doi.org/10.1002/ana.21558.

    Article  PubMed  Google Scholar 

  551. Barbaro NM, Quigg M, Ward MM, et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: The randomized, controlled ROSE trial. Epilepsia. 2018;59(6):1198–207.

    PubMed  Google Scholar 

  552. Feng E-S, Sui C-B, Wang T-X, Sun G-L. Stereotactic radiosurgery for the treatment of mesial temporal lobe epilepsy. Acta Neurol Scand. 2016;134(6):442–51.

    PubMed  Google Scholar 

  553. Régis J, Rey M, Bartolomei F, et al. Gamma knife surgery in mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia. 2004;45:504–15.

    PubMed  Google Scholar 

  554. Chang EF, Quigg M, Oh MC, Dillon WP, Ward MM, Laxer KD, Broshek DK, Barbaro NM. Predictors of efficacy after stereotactic radiosurgery for medial temporal lobe epilepsy. Neurology. 2010;74:165–72. https://doi.org/10.1212/WNL.0b013e3181c9185d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  555. Quigg M, Broshek DK, Barbaro NM, Ward MM, Laxer KD, Yan G, et al. Neuropsychological outcomes after Gamma Knife radiosurgery for mesial temporal lobe epilepsy: a prospective multicenter study. Epilepsia. 2011;52:909–16.

    PubMed  PubMed Central  Google Scholar 

  556. Régis J, Bartolomei F, Chauvel P. Radiosurgery. In: Baltuch GH, Villemure J-G, editors. Operative techniques in epilepsy surgery. New York: Thieme; 2009. p. 187–96.

    Google Scholar 

  557. Rheims S, Didelot A, Guénot M, Régis J, Ryvlin P. Subcontinuous epileptiform activity after failed hippocampal radiosurgery. Epilepsia. 2011;52:1425–9.

    PubMed  Google Scholar 

  558. Arita K, Kurusi K, Iida K, Hanaya R, Akimitsu T, Hibino S, Pant B, Hamasaki M, Shinagawa S. Subsidence of seizure induced by stereotactic radiation in a patient with hypothalamic hamartoma. J Neurosurg. 1998;89:645–8.

    CAS  PubMed  Google Scholar 

  559. Régis J, Bartolomei F, de Toffol B, et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Neurosurgery. 2000;47:1343–51.

    PubMed  Google Scholar 

  560. Régis J, Bartolomei F, Rey M, Hayashi M, Chauvel P, Peragut J. Gamma knife surgery for mesial temporal lobe epilepsy. J Neurosurg. 2000;93:141–6.

    PubMed  Google Scholar 

  561. Régis J, Hayashi M, Eupierre LP, et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Acta Neurochir. 2004;91(Suppl):33–50.

    Google Scholar 

  562. Schulze-Bonhage A, Homberg V, Trippel M, et al. Interstitial radiosurgery in the treatment of gelastic epilepsy due to hypothalamic hamartomas. Neurology. 2004;62:644–7.

    CAS  PubMed  Google Scholar 

  563. Gazzola DM, Balcer LJ, French JA. Seizure-free outcome in randomized add-on trials of the new antiepileptic drugs. Epilepsia. 2007;48:1303–7. https://doi.org/10.1111/j.1528-1167.2007.01136.x.

    Article  CAS  PubMed  Google Scholar 

  564. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342:314–9. https://doi.org/10.1056/NEJM200002033420503.

    Article  CAS  PubMed  Google Scholar 

  565. Kwan P, Sperling MR. Refractory seizures: try additional antiepileptic drugs (after two have failed) or go directly to early surgery evaluation? Epilepsia. 2009;50(Suppl 8):57–62. https://doi.org/10.1111/j.1528-1167.2009.02237.x.

    Article  CAS  PubMed  Google Scholar 

  566. Thom M, Mathern GW, Cross JH, Bertram EH. Mesial temporal lobe epilepsy: how do we improve surgical outcome? Ann Neurol. 2010;68:424–34. https://doi.org/10.1002/ana.22142.

    Article  PubMed  PubMed Central  Google Scholar 

  567. Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8. https://doi.org/10.1056/NEJM200108023450501.

    Article  CAS  PubMed  Google Scholar 

  568. Hauser WA. Status epilepticus: epidemiologic considerations. Neurology. 1990;40:9–13.

    CAS  PubMed  Google Scholar 

  569. Dibué-Adjeia M, Kamp MA, Vonck K. 30 years of vagus nerve stimulation trials in epilepsy: do we need neuromodulation-specific trial designs? Epilepsy Res. 2019;153:71–5.

    Google Scholar 

  570. Suthana N, Haneef Z, Stern J, et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366:502–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  571. Elger CE, Mormann F. Seizure prediction and documentation—two important problems. Lancet Neurol. 2013;12:531–2.

    PubMed  Google Scholar 

  572. Morris GL, Gloss D, Buchhalter J, Mack KJ, Nichels K, Harden C. Evidence-based guidline update: vagus nerve stimulation for the treatment of epilepsy. Neurology. 2013;81:1453–9.

    PubMed  PubMed Central  Google Scholar 

  573. Morrell M, Hirsch L, Bergey G, Barkley G, Wharen R, Murro A, Fisch B, Rossi M, Labar D, Duckrow R, Sirven J, Drazkowski J, Worrell G, Gwinn R. Long-term safety and efficacy of the RNSTM system in adults with medically intractable partial onset seizures. Epilepsia. 2008;49:480.

    Google Scholar 

  574. Grinenko O, Li J, Mosher JC, Wang IZ, Bulacio JC, Gonzalez-Martinez J, Nair D, Najm I, Leahy RM, Chauvel P. A fingerprint of the epileptogenic zone in human epilepsies. Brain. 2018;141(1):117–31.

    PubMed  Google Scholar 

  575. Wolf A, Naylor K, Tam M. Risk of radiation-associated intracranial malignancy after stereotactic radiosurgery: a retrospective, multicentre, cohort study. Lancet Oncol. 2019;20(1):159–64.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). Non-resective Epilepsy Surgery. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_14

Download citation

Publish with us

Policies and ethics