Skip to main content

Pathology in Epilepsy Surgery

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies

Abstract

It may be postulated that every focal epilepsy is based on structural abnormalities of the brain. In fact, since the description of Ammon’s horn sclerosis in 1880 by Sommer, histopathological analysis of specimens obtained from epilepsy surgery revealed a large amount of lesions including hippocampal sclerosis, malformative, neoplastic, ischemic, and traumatic lesions, as well as cerebrovascular and infectious diseases. The data of the European Epilepsy Brain Bank (EEBB) comprising specimens of 9523 patients (4944 men, 4579 women; 6900 adults, 2623 children) who underwent resective surgery for drug-resistant seizures in 36 centers of 12 European countries over 25 years have been published by Blümcke et al. in 2017. Overall, the most common categories were hippocampal sclerosis (HS) as found in 36.4% of the patients (88.7% of cases were adults), tumors (mainly gangliogliomas) detected in 23.6%, and malformations of cortical development (MCD) as observed in 19.8% of patients (focal cortical dysplasia was the most common type, 52.7% of cases were children). No histopathological diagnosis could be established for 7.7% of the patients. The ten most frequent histopathological diagnoses accounted for 86.7% of cases. Overall, seizure-free outcome at 1-year follow-up was achieved in 61.4% of patients with HS, 68.4% with tumors, 57.6% with MCD, and in 50.2% without specific pathological findings. Advances in neuropathological diagnosis and classification of epileptogenic brain lesions contribute to the understanding of epileptogenesis and are helpful for clinical correlation, outcome stratification, and patient care. The relatively high rate of seizure-free outcome in patients without specific pathological findings rises questions as to the classical concept of epileptogenesis based on specific structural abnormalities indicating successful surgical interruption of functional epileptogenic networks.

My therapist read my pathology report and said: There’s only one way you can beat your tumor. What’s that? You have to find out what caused it.

Kathy Acker

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sommer W. Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr. 1880;10:631–75.

    Google Scholar 

  2. Babb TL, Brown WJ, Pretorius J, et al. Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia. 1984;25(6):729–40.

    CAS  PubMed  Google Scholar 

  3. Blümcke I, Vinters HV, Armstrong D, et al. Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord. 2009;11(3):181–93.

    PubMed  Google Scholar 

  4. De Lanerolle NC, Lee T-S, Spencer DD. Histopathology of human epilepsy. In: Noebels J, Avoli M, Rogawski M, Olsen R, Delgado-Escueta A, editors. Jasper’s basic mechanisms of the epilepsies. New York: Oxford University Press; 2012. Print ISBN-13: 9780199746545.

    Google Scholar 

  5. Dlugos DJ, Jaggi J, O’Connor WM, Ding XS, Reivich M, O’Connor MJ, Sperling MR. Hippocampal cell density and subcortical metabolism in temporal lobe epilepsy. Epilepsia. 1999;40:408–13.

    CAS  PubMed  Google Scholar 

  6. Engel J, Brown WJ, Kuhl DE, Phelps ME, Mazziota JC, Crandall PH. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol. 1982;12:518–28.

    PubMed  Google Scholar 

  7. Falconer MA. The significance of mesial temporal sclerosis (Ammon’s horn sclerosis) in epilepsy. Guys Hosp Rep. 1968;117:1–12.

    CAS  PubMed  Google Scholar 

  8. Kim JH. Pathology of seizure disorders. Neuroimaging Clin N Am. 1995;5:527–45.

    CAS  PubMed  Google Scholar 

  9. Kim JH. Pathology of epilepsy. Exp Mol Pathol. 2001;70:345–67.

    CAS  PubMed  Google Scholar 

  10. Vinters HV, Armstrong DL, Babb TL, et al. The neuropathology of human symptomatic epilepsy. In: Engel J, editor. Surgical treatment of the epilepsies. New York: Raven Press; 1993. p. 593–608.

    Google Scholar 

  11. Al Sufiani FA, Ang LC. Neuropathology of temporal lobe epilepsy. Epilepsy Res Treat. 2012; https://doi.org/10.1155/2012/624519.

  12. Blümcke I, Thom M, Aronica E, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.

    PubMed  Google Scholar 

  13. Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res. 2007;163:755–73.

    CAS  PubMed  Google Scholar 

  14. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M. Role for reelin in the development of granule cells dispersion in temporal lobe epilepsy. J Neurosci. 2002;22:5797–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sloviter RS, Sollas AL, Barbaro NM, Laxer KD. Calcium-binding protein (Calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. J Comp Neurol. 1991;308:381–96.

    CAS  PubMed  Google Scholar 

  16. Soriano E, Frotscher M. Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus. 1994;4:65–9.

    CAS  PubMed  Google Scholar 

  17. Blümcke I, Spreafico R, Haaker G, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377:1648–56.

    PubMed  Google Scholar 

  18. Babb TL, Wilson CL, Isokawa-Akesson M. Firing patterns of human limbic neurons during stereoencephalography (SEEG) and clinical temporal lobe seizures. Electroencephalogr Clin Neurophysiol. 1987;66(6):467–82.

    CAS  PubMed  Google Scholar 

  19. Rausch R, Babb TL. Hippocampal neuron loss and memory scores before and after temporal lobe surgery for epilepsy. Arch Neurol. 1993;50(8):812–7.

    CAS  PubMed  Google Scholar 

  20. Vivash L, Tostevin A, Liu DS, Dalic L, Dedeurwaerdere S, Hicks RJ, Williams DA, Myers DE, O’Brien TJ. Changes in hippocampal GABAA/cBZR density during limbic epileptogenesis: relationship to cell loss and mossy fibre sprouting. Neurobiol Dis. 2011;41(2):227–36. https://doi.org/10.1016/j.nbd.2010.08.021.

    Article  CAS  PubMed  Google Scholar 

  21. Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, Dingledine R. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol. 2003;182(1):21–34.

    CAS  PubMed  Google Scholar 

  22. Blümcke I, Thom M, Aronica E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54:1315–29.

    PubMed  Google Scholar 

  23. Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40(5):520–43.

    PubMed  PubMed Central  Google Scholar 

  24. Na M, Ge H, Shi C. Long-term seizure outcome for international consensus classification of hippocampal sclerosis: a survival analysis. Seizure. 2015;25:141–6.

    PubMed  Google Scholar 

  25. Blümcke I, Aronica E, Urbach H, et al. A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol. 2014;128(1):39–54.

    PubMed  PubMed Central  Google Scholar 

  26. Thom M, Blümcke I, Aronica E. Long-term epilepsy-associated tumors. Brain Pathol. 2012;22:350–79.

    PubMed  PubMed Central  Google Scholar 

  27. Giulioni M, Marucci G, Pelliccia V, Gozzo F, Barba C, et al. Epilepsy surgery of “low grade epilepsy associated neuroepithelial tumors”: a retrospective nationwide Italian study. Epilepsia. 2017; https://doi.org/10.1111/epi.13866.

  28. Louis DN, Ohgaki H, Wiestler OD, et al. WHO classification of tumours of the central nervous system. Lyon: IARC; 2016.

    Google Scholar 

  29. Pelliccia V, Deleo F, Gozzo F, et al. Early and late epilepsy surgery in focal epilepsies associated with long-term epilepsy-associated tumors. J Neurosurg. 2017;127(5):1147–52.

    PubMed  Google Scholar 

  30. Prayson R, Fong J, Najm I. Coexistent pathology in chronic epilepsy patients with neoplasms. Mod Pathol. 2010;23:1097–103.

    PubMed  Google Scholar 

  31. Luyken C, Blümcke I, Fimmers R, Urbach H, Elger CE, Wiestler OD, Schramm J. The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia. 2003;44:822–30.

    PubMed  Google Scholar 

  32. Blümcke I, Aronica E, Miyata H, et al. International recommendation for a comprehensive neuropathologic workup of epilepsy surgery brain tissue: a consensus Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2016;47(3):348–58.

    Google Scholar 

  33. Englot DJ, Berger MS, Barbaro NM, Chang EF. Factors associated with seizure freedom in the surgical resection of glioneuronal tumors. Epilepsia. 2012;53:51–7.

    PubMed  Google Scholar 

  34. Chassoux F, Landré E, Mellerio C, Turak B, Mann MW, Daumas-Duport C, et al. Type II focal cortical dysplasia: electroclinical phenotype and surgical outcome related to imaging. Epilepsia. 2012;53(2):349–58.

    Article  PubMed  Google Scholar 

  35. Giulioni M, Marucci G, Martinoni M, et al. Seizure outcome in surgically treated drug-resistant mesial temporal lobe epilepsy based on the recent histopathological classifications. J Neurosurg. 2013;119:37–47.

    Article  PubMed  Google Scholar 

  36. Giulioni M, Marucci G, Martinoni M, et al. Epilepsy associated tumors: review article. World J Clin Cases. 2014;2:623–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tomita T, Volk JM, Shen W, et al. Glioneuronal tumors of cerebral hemisphere in children: correlation of surgical resection with seizure outcomes and tumor recurrences. Child’s Nerv Syst. 2016;32:1839–48.

    Article  Google Scholar 

  38. Clusmann H, Schramm J, Kral T, et al. Prognostic factors and outcome after different types of resection for temporal lobe epilepsy. J Neurosurg. 2002;97(5):1131–41.

    Article  PubMed  Google Scholar 

  39. Majores M, von Lehe M, Fassunke J, et al. Tumor recurrence and malignant progression of gangliogliomas. Cancer. 2008;113:3355–63.

    Article  PubMed  Google Scholar 

  40. Bonney PA, Glenn CA, Ebeling PA, et al. Literature review seizure freedom rates and prognostic indicators after resection of gangliogliomas: a review. World Neurosurg. 2015;84:1988–96.

    PubMed  Google Scholar 

  41. Hirsch M, Coenen VA, Heiland DH, Lützen N, Straszewski O, Schulze-Bonhage A. Epilepsieassoziierte Tumoren des Zentralnervensystems. Nervenarzt. 2015; https://doi.org/10.1007/s00115-015-0031-7.

  42. Barkovitch AJ, Kuzniecky RI, et al. A developmental and genetic classification for malformations of cortical development. Neurology. 2005;65:1873–87.

    Google Scholar 

  43. Cloppenborg T, May TW, Blümcke I, et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry. 2016;87:1322–9.

    PubMed  Google Scholar 

  44. Hemb M, Velasco TR, Parnes MS, et al. Improved outcomes in pediatric epilepsy surgery: the UCLA experience, 1986-2008. Neurology. 2010;74:1768–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lamberink HJ, Boshuisen K, van Rijen PC, Gosselaar PH, Braun KP. Changing profiles of pediatric epilepsy surgery candidates over time: a nationwide single-center experience from 1990 to 2011. Epilepsia. 2015;56:717–25.

    PubMed  Google Scholar 

  46. Harvey AS, Cross JH, Shinnar S, Mathern GW, Mathern BW. ILAE Pediatric Epilepsy Surgery Survey Taskforce. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia. 2008;49(1):146–55.

    PubMed  Google Scholar 

  47. Mischel PS, Nguyen LP, Vinters HV. Cerebral cortical dysplasia associated with pediatric epilepsy. Review of neuropathologic features and proposal for a grading system. J Neuropathol Exp Neurol. 1995;54:137–53.

    CAS  PubMed  Google Scholar 

  48. Palmini A, Najm I, Avanzini G, et al. Terminology and classification of the cortical dysplasias. Neurology. 2004;62:S2–8.

    CAS  PubMed  Google Scholar 

  49. Veersema TJ, Swampillai B, Ferrier CH, et al. Long-term seizure outcome after epilepsy surgery in patients with mild malformation of cortical development and focal cortical dysplasia. Epilepsia. 2019; https://doi.org/10.1002/epi4.12289.

  50. Kim DW, Lee SK, Chu K, et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology. 2009;72:211–6.

    CAS  PubMed  Google Scholar 

  51. Fauser S, Schulze-Bonhage A, Honegger J, et al. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology. Brain. 2004;127:2406–18.

    PubMed  Google Scholar 

  52. Wagner J, Urbach H, Niehusmann P, von Lehe M, Elger CE, Wellmer J. Focal cortical dysplasia type IIb: completeness of cortical, not subcortical, resection is necessary for seizure freedom. Epilepsia. 2011;52:1418–24.

    PubMed  Google Scholar 

  53. Cendes F, Cook MJ, Watson C, et al. Frequency and characteristics of dual pathology in patients with lesional epilepsy. Neurology. 1995;45:2058–64.

    CAS  PubMed  Google Scholar 

  54. Lévesque MF, Nakasato N, Vinters HV, Babb TL. Surgical treatment of limbic epilepsy associated with extrahippocampal lesions: the problem of dual pathology. J Neurosurg. 1991;75:364–70.

    PubMed  Google Scholar 

  55. Li LM, Cendes F, Andermann F, et al. Surgical outcome in patients with epilepsy and dual pathology. Brain. 1999;122:799–805.

    PubMed  Google Scholar 

  56. Raymond AA, Fish DR, Stevens JM, Cook MJ, Sisodiya SM, Shorvon SD. Association of hippocampal sclerosis with cortical dysgenesis in patients with epilepsy. Neurology. 1994;44:1841–5.

    CAS  PubMed  Google Scholar 

  57. Eriksson SH, Nordborg D, Rydenhag B, et al. Parenchymal lesions in pharmacoresistant temporal lobe epilepsy: dual and multiple pathology. Acta Neurol Scand. 2005;112:151–6.

    CAS  PubMed  Google Scholar 

  58. Kral T, Clusmann H, Blumcke I, Fimmers R, Ostertun B, Kurthen M, Schramm J. Outcome of epilepsy surgery in focal cortical dysplasia. J Neurol Neurosurg Psychiatry. 2003;74:183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Srikijvilaikul T, Najm IM, Hovinga CA, Prayson RA, Gonzalez-Martinez J, Bingaman WE. Seizure outcome after temporal lobectomy in temporal lobe cortical dysplasia. Epilepsia. 2003;44:1420–4.

    PubMed  Google Scholar 

  60. Salanova V. Temporal lobe epilepsy: analysis of patients with dual pathology. Acta Neurol Scand. 2004;109(2):126–31.

    CAS  PubMed  Google Scholar 

  61. Jay V, Becker LE, Otsubo H, Hwang PA, Homan HJ, Harwood-Nash D. Pathology of temporal lobectomy for refractory seizures in children. Review of 20 cases including some unique malformative lesions. J Neurosurg. 1993;79:53–61.

    CAS  PubMed  Google Scholar 

  62. Nishio S, Morioka T, Hisada K, Fukui M. Temporal lobe epilepsy: a clinicopathological study with special reference to temporal neocortical changes. Neurosurg Rev. 2000;23:84–9.

    CAS  PubMed  Google Scholar 

  63. Watson C, Chen W, Kupsky W, et al. The characteristics of microscopic dual pathology: a volumetric MRI and histopathological study. Epilepsia. 1999;40:200.

    Google Scholar 

  64. Ferrier CH, Engelsman J, Alarcon G, et al. Prognostic factors in presurgical assessment of frontal lobe epilepsy. J Neurol Neurosurg Psychiatry. 1999;66:350–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Frater JL, Prayson RA, Morris HH 3rd., et al. Surgical pathologic findings of extratemporal-based intractable epilepsy: a study of 133 consecutive resections. Arch Pathol Lab Med. 2000;124:545–9.

    CAS  PubMed  Google Scholar 

  66. Jobst BC, Siegel AM, Thadani VM, et al. Intractable seizures of frontal lobe origin: clinical characteristics, localizing signs, and results of surgery. Epilepsia. 2000;41:1139–52.

    CAS  PubMed  Google Scholar 

  67. Schramm J, Kral T, Kurthen M, et al. Surgery to treat focal frontal lobe epilepsy in adults. Neurosurgery. 2002;51:644–54.

    PubMed  Google Scholar 

  68. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Lüders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130:574–84.

    PubMed  Google Scholar 

  69. Aykut-Bingol C, Bronen RA, Kim JH, Spencer DD, Spencer SS. Surgical outcome in occipital lobe epilepsy: implications for pathophysiology. Ann Neurol. 1998;44:60–9.

    CAS  PubMed  Google Scholar 

  70. Olivier A, Boling W Jr. Surgery of parietal and occipital lobe epilepsy. Adv Neurol. 2000;84:533–75.

    CAS  PubMed  Google Scholar 

  71. Binder DK, Lehe v M, Kral T, et al. Surgical treatment of occipital lobe epilepsy. J Neurosurg. 2008;109(1):57–69.

    PubMed  Google Scholar 

  72. Cohen-Gadol AA, Bradley CC, Williamson A, Kim JH, Westerveld M, Duckrow RB, Spencer DD. Normal magnetic resonance imaging and medial temporal lobe epilepsy: the clinical syndrome of paradoxical temporal lobe epilepsy. J Neurosurg. 2005;102:902–9.

    PubMed  Google Scholar 

  73. Vale FL, Effio E, Arredondo N, et al. Efficacy of temporal lobe surgery for epilepsy in patients with negative MRI for mesial temporal lobe sclerosis. J Clin Neurosci. 2012;19:101–6.

    PubMed  Google Scholar 

  74. Wang ZI, Alexopouzlos AV, Jones SE, et al. The pathology of magnetic-resonance imaging-negative epilepsy. Mod Pathol. 2013;26:1051–8.

    PubMed  Google Scholar 

  75. Bell ML, Rao S, So EL, et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia. 2009;50:2053–60.

    PubMed  PubMed Central  Google Scholar 

  76. Burkholder DB, Sulc V, Hoffman EM, et al. Interictal scalp electroencephalography and intraoperative electrocorticography in magnetic resonance imaging-negative temporal lobe epilepsy surgery. JAMA Neurol. 2014;71:702–9.

    PubMed  PubMed Central  Google Scholar 

  77. Cukiert A, Burattini JA, Mariani PP, et al. Outcome after corticoamygdalohippocampectomy in patients with temporal lobe epilepsy and normal MRI. Seizure. 2010;19:319–23.

    PubMed  Google Scholar 

  78. Fong JS, Lehi L, Najm I, et al. Seizure outcome and its predictors after temporal lobe epilepsy surgery in patients with normal MRI. Epilepsia. 2011;52:1393–401. https://doi.org/10.1111/j.1528-1167.2011.03091.x.

    Article  PubMed  Google Scholar 

  79. Smith AP, Sani S, Kanner AM, et al. Medically intractable temporal lobe epilepsy in patients with normal MRI: surgical outcome in twenty-one consecutive patients. Seizure. 2011;20:475–9.

    Article  PubMed  Google Scholar 

  80. Sylaja PN, Radhakrishnan K, Kesavadas C, Sarma PS. Seizure outcome after anterior temporal lobectomy and its predictors in patients with apparent temporal lobe epilepsy and normal MRI. Epilepsia. 2004;45(7):803–8.

    CAS  PubMed  Google Scholar 

  81. Carne RP, O’Brien TJ, Kilpatrick CJ, MacGregor LR, Hicks RJ, Murphy MA, Bowden SC, Kaye AH, Cook MJ. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain. 2004;127:2276–85.

    CAS  PubMed  Google Scholar 

  82. Cascino GD, Jack CRJ, Parisi JE, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol. 1991;30:31–6.

    CAS  PubMed  Google Scholar 

  83. Hong KS, Lee SK, Kim JY, Lee DS, Chung CK. 2002. Presurgical evaluation and surgical outcome of 41 patients with nonlesional neocortical epilepsy. Seizure. 2002;11:184–92.

    PubMed  Google Scholar 

  84. Kutsy RL. Focal extratemporal epilepsy: clinical features, EEG patterns, and surgical approach. J Neurol Sci. 1999;166:1–15.

    CAS  PubMed  Google Scholar 

  85. Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51:1256–62.

    CAS  PubMed  Google Scholar 

  86. Kogias E, Altenmüler D-M, Klingler J-H, et al. Histopathology of 3 Tesla MRI-negative extratemporal focal epilepsies. J Clin Neurosci. 2018;50:232–6.

    PubMed  Google Scholar 

  87. Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia. 2015;56(11):1669–86.

    CAS  PubMed  Google Scholar 

  88. Adler S, Wagstyl K, Gunny R, Ronan L, Carmichael D, Cross JH, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage Clin. 2017;14:18–27.

    PubMed  Google Scholar 

  89. Hedley-Whyte ET, Goldman JE, Nedergaard M, et al. Hyaline protoplasmic astrocytopathy of neocortex. J Neuropathol Exp Neurol. 2009;68:136–47.

    PubMed  Google Scholar 

  90. Schurr J, Coras R, Rössler K, et al. Mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy: a new clinico-pathological entity. Brain Pathol. 2017;27:26–35.

    CAS  PubMed  Google Scholar 

  91. Gil F, Padilla N, Soria-Pastor S, et al. Beyond the epileptic focus: functional epileptic networks in focal epilepsy. Cereb Cortex. 2019; https://doi.org/10.1093/cercor/bhz243.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). Pathology in Epilepsy Surgery. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_13

Download citation

Publish with us

Policies and ethics