Skip to main content

Pediatric Epilepsy Surgery

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies
  • 488 Accesses

Abstract

Epilepsy is one of the most frequent neurological diseases in the pediatric age group, particularly in the first years of life. Cohort studies have shown that 50–70% of children achieve long-term seizure freedom under anticonvulsive drug treatment, while 20–25% present persistent seizures, and 10–15% fulfill the criteria of pharmacoresistance. Advances in MR imaging facilitating detection of cortical malformations as the most important structural abnormalities in the young age have promoted pediatric epilepsy surgery with increasing numbers of surgical, and particularly, extratemporal, multilobar, and hemispheric procedures. Due to the ongoing brain development and myelinization, however, interpretation of MR images is rendered difficult in the first years of life, and repeat MRI studies in negative cases are required. In addition, clinical and electrophysiological presurgical assessment is impeded in early life by unspecific seizure semiology and diffuse or bilateral EEG patterns. In addition to the seizure burden, there is a noticeable disparity in cognitive development between children with epilepsy and their healthy peers. Epilepsy onset in the first years of life, with poor response to anti-seizure drugs and frequent epileptic seizures, will eventually result in developmental stagnation or even regression. Surgical treatment has been shown to provide seizure-free outcome in 60–80% of children with intralobar resections, while results of multilobar procedures are less favorable with long-term seizure control rates of 40–60% and a significant percentage of patients requiring reoperation. Additional to seizure alleviation, epilepsy surgery in early life has the potential to successfully address the developmental delay. With epilepsy duration constituting the only modifiable predictor for seizure and developmental outcome, there is a general consensus to offer surgery as soon as intractability of epilepsy is ascertained, including in the first years of life. Given the obvious benefits of plasticity in overcoming anticipated functional deficits, early intervention and more radical and thus complete lesion resection is justified.

The true measure of any society can be found in how it treats its most vulnerable members.

Mahatma Gandhi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaberg KM, Gunnes N, Bakken IJ, Lund Søraas C, Berntsen A, Magnus P, et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics. 2017;139(5):e20163908.

    PubMed  Google Scholar 

  2. Arts WF, Geerts AT. When to start drug treatment for childhood epilepsy: the clinical-epidemiological evidence. Eur J Paediatr Neurol. 2009;13(2):93–101.

    Google Scholar 

  3. Berg AT, Mathern GW, Bronen RA, Fulbright RK, DiMario F, Testa FM, et al. Frequency, prognosis and surgical treatment of structural abnormalities seen with magnetic resonance imaging in childhood epilepsy. Brain J Neurol. 2009;132(Pt 10):2785–97.

    Google Scholar 

  4. Ramantani G, Reuner G. Cognitive development in pediatric epilepsy surgery. Neuropediatrics. 2018;49(2):93–103.

    PubMed  Google Scholar 

  5. Roulet-Perez E, Davidoff V, Mayor-Dubois C, Maeder-Ingvar M, Seeck M, Ruffieux C, et al. Impact of severe epilepsy on development: recovery potential after successful early epilepsy surgery. Epilepsia. 2010;51(7):1266–76.

    PubMed  Google Scholar 

  6. Van Schooneveld MMJ, Braun KPJ. Cognitive outcome after epilepsy surgery in children. Brain Dev. 2013;35(8):721–9.

    PubMed  Google Scholar 

  7. Asarnow RF, LoPresti C, Guthrie D, Elliott T, Cynn V, Shields WD, et al. Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms. Dev Med Child Neurol. 1997;39(7):430–40.

    CAS  PubMed  Google Scholar 

  8. Otsuki T, Kim H-D, Luan G, Inoue Y, Baba H, Oguni H, et al. Surgical versus medical treatment for children with epileptic encephalopathy in infancy and early childhood: Results of an international multicenter cohort study in Far-East Asia (the FACE study). Brain Dev. 2016;38:449–60.

    Google Scholar 

  9. Dwivedi R, Ramanujam B, Chandra PS, Sapra S, Gulati S, Kalaivani M, et al. Surgery for drug-resistant epilepsy in children. N Engl J Med. 2017;377(17):1639–47.

    PubMed  Google Scholar 

  10. Hamer HM, Wyllie E, Lüders HO, Kotagal P, Acharya J. Symptomatology of epileptic seizures in the first three years of life. Epilepsia. 1999;40(7):837–44.

    Google Scholar 

  11. Kadish NE, Bast T, Reuner G, Wagner K, Mayer H, Schubert-Bast S, et al. Epilepsy surgery in the first 3 years of life: predictors of seizure freedom and cognitive development. Neurosurgery. 2019;84(6):E368–77. https://doi.org/10.1093/neuros/nyy376.

  12. Ramantani G, Kadish NE, Brandt A, Strobl K, Stathi A, Wiegand G, et al. Seizure control and developmental trajectories after hemispherotomy for refractory epilepsy in childhood and adolescence. Epilepsia. 2013;54(6):1046–55.

    PubMed  Google Scholar 

  13. Ramantani G, Kadish NE, Strobl K, Brandt A, Stathi A, Mayer H, et al. Seizure and cognitive outcomes of epilepsy surgery in infancy and early childhood. Eur J Paediatr Neurol. 2013;17(5):498–506.

    PubMed  Google Scholar 

  14. Wyllie E, Lachhwani DK, Gupta A, Chirla A, Cosmo G, Worley S, et al. Successful surgery for epilepsy due to early brain lesions despite generalized EEG findings. Neurology. 2007;69(4):389–97.

    CAS  PubMed  Google Scholar 

  15. Barba C, Specchio N, Guerrini R, Tassi L, De Masi S, Cardinale F, et al. Increasing volume and complexity of pediatric epilepsy surgery with stable seizure outcome between 2008 and 2014: a nationwide multicenter study. Epilepsy Behav. 2017;75:151–7.

    PubMed  Google Scholar 

  16. Hemb M, Velasco TR, Parnes MS, Wu JY, Lerner JT, Matsumoto JH, et al. Improved outcomes in pediatric epilepsy surgery: the UCLA experience, 1986-2008. Neurology. 2010;74(22):1768–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamberink HJ, Boshuisen K, van Rijen PC, Gosselaar PH, Braun KPJ, Dutch Collaborative Epilepsy Surgery Program (DCESP). Changing profiles of pediatric epilepsy surgery candidates over time: a nationwide single-center experience from 1990 to 2011. Epilepsia. 2015;56(5):717–25.

    PubMed  Google Scholar 

  18. Honda R, Kaido T, Sugai K, Takahashi A, Kaneko Y, Nakagwa E, et al. Long-term developmental outcome after early hemispherotomy for hemimegalencephaly in infants with epileptic encephalopathy. Epilepsy Behav. 2013;29(1):30–5.

    PubMed  Google Scholar 

  19. Jonas R, Asarnow RF, LoPresti C, Yudovin S, Koh S, Wu JY, et al. Surgery for symptomatic infant-onset epileptic encephalopathy with and without infantile spasms. Neurology. 2005;64(4):746–50.

    CAS  PubMed  Google Scholar 

  20. Loddenkemper T, Holland KD, Stanford LD, Kotagal P, Bingaman W, Wyllie E. Developmental outcome after epilepsy surgery in infancy. Pediatrics. 2007;119(5):930–5.

    PubMed  Google Scholar 

  21. Pestana Knight EM, Schiltz NK, Bakaki PM, Koroukian SM, Lhatoo SD, Kaiboriboon K. Increasing utilization of pediatric epilepsy surgery in the United States between 1997 and 2009. Epilepsia. 2015;56(3):375–81.

    PubMed  PubMed Central  Google Scholar 

  22. Barba C, Cross JH, Brain K, et al. Trends in pediatric epilepsy surgery in Europe between 2008 and 2015: Country-, center-, and age-specific variation. Epilepsia. 2020;61(2):216–27.

    Google Scholar 

  23. Dunkley C, Kung J, Scott RC, Nicolaides P, Neville B, Aylett SE, et al. Epilepsy surgery in children under 3 years. Epilepsy Res. 2011;93(2–3):96–106.

    CAS  PubMed  Google Scholar 

  24. Steinbok P, Gan PYC, Connolly MB, Carmant L, Barry Sinclair D, Rutka J, et al. Epilepsy surgery in the first 3 years of life: a Canadian survey. Epilepsia. 2009;50(6):1442–9.

    PubMed  Google Scholar 

  25. Cloppenborg T, May TW, Blümcke I, Fauser S, Grewe P, Hopf JL, et al. Differences in pediatric and adult epilepsy surgery: a comparison at one center from 1990 to 2014. Epilepsia. 2019;60(2):233–45.

    PubMed  Google Scholar 

  26. Harvey AS, Cross JH, Shinnar S, Mathern GW, Mathern BW, ILAE Pediatric Epilepsy Surgery Survey Taskforce. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia. 2008;49(1):146–55.

    PubMed  Google Scholar 

  27. Blümcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377(17):1648–56.

    PubMed  Google Scholar 

  28. Ramantani G, Strobl K, Stathi A, Brandt A, Schubert-Bast S, Wiegand G, et al. Reoperation for refractory epilepsy in childhood: a second chance for selected patients. Neurosurgery. 2013;73(4):695–704.

    PubMed  Google Scholar 

  29. Ramantani G, Kadish NE, Mayer H, Anastasopoulos C, Wagner K, Reuner G, et al. Frontal lobe epilepsy surgery in childhood and adolescence: predictors of long-term seizure freedom, overall cognitive and adaptive functioning. Neurosurgery. 2018;83(1):93–103.

    PubMed  Google Scholar 

  30. Cossu M, Lo Russo G, Francione S, Mai R, Nobili L, Sartori I, et al. Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia. 2008;49(1):65–72.

    PubMed  Google Scholar 

  31. Veersema TJ, van Eijsden P, Gosselaar PH, Hendrikse J, Zwanenburg JJM, Spliet WGM, et al. 7 tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia. Epileptic Disord. 2016;18(3):315–23.

    PubMed  Google Scholar 

  32. Adler S, Wagstyl K, Gunny R, Ronan L, Carmichael D, Cross JH, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin. 2017;14:18–27.

    PubMed  Google Scholar 

  33. Jayakar P, Gaillard WD, Tripathi M, Libenson MH, Mathern GW, Cross JH, et al. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia. 2014;55(4):507–18.

    Article  PubMed  Google Scholar 

  34. Cosandier-Rimélé D, Ramantani G, Zentner J, Schulze-Bonhage A, Duempelmann M. A realistic multimodal modeling approach for the evaluation of distributed source analysis: application to sLORETA. J Neural Eng. 2017; https://doi.org/10.1088/1741-2552/aa7db1.

  35. Ramantani G, Cosandier-Rimélé D, Schulze-Bonhage A, Maillard L, Zentner J, Dümpelmann M. Source reconstruction based on subdural EEG recordings adds to the presurgical evaluation in refractory frontal lobe epilepsy. Clin Neurophysiol. 2013;124(3):481–91.

    Article  PubMed  Google Scholar 

  36. Ramantani G, Dümpelmann M, Koessler L, Brandt A, Cosandier-Rimélé D, Zentner J, et al. Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources. Epilepsia. 2014;55(2):278–88.

    Article  PubMed  Google Scholar 

  37. Koessler L, Cecchin T, Colnat-Coulbois S, Vignal J-P, Jonas J, Vespignani H, et al. Catching the invisible: mesial temporal source contribution to simultaneous EEG and SEEG recordings. Brain Topogr. 2015;28(1):5–20.

    Article  PubMed  Google Scholar 

  38. Maillard LG, Tassi L, Bartolomei F, Catenoix H, Dubeau F, Szurhaj W, et al. Stereoelectroencephalography and surgical outcome in polymicrogyria-related epilepsy: a multicentric study. Ann Neurol. 2017;82(5):781–94.

    Article  CAS  PubMed  Google Scholar 

  39. Rikir E, Koessler L, Gavaret M, Bartolomei F, Colnat-Coulbois S, Vignal J-P, et al. Electrical source imaging in cortical malformation-related epilepsy: a prospective EEG-SEEG concordance study. Epilepsia. 2014;55(6):918–32.

    Article  PubMed  Google Scholar 

  40. Ramantani G, Stathi A, Brandt A, Strobl K, Schubert-Bast S, Wiegand G, et al. Posterior cortex epilepsy surgery in childhood and adolescence: predictors of long-term seizure outcome. Epilepsia. 2017;58(3):412–9.

    Article  PubMed  Google Scholar 

  41. Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P. Seizure outcome after epilepsy surgery in children and adolescents. Ann Neurol. 1998;44(5):740–8.

    Article  CAS  PubMed  Google Scholar 

  42. Chen HH, Chen C, Hung SC, et al. Cognitive and epilepsy outcomes after epilepsy surgery caused by focal cortical dysplasia in children: early intervention maybe better. Child Nerv Syst. 2014;30(11):1885–95.

    Google Scholar 

  43. Skirrow C, Cross JH, Cormack F, Harkness W, Vargha-Khadem F, Baldeweg T. Long-term intellectual outcome after temporal lobe surgery in childhood. Neurology. 2011;76(15):1330–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dagar A, Chandra PS, Chaudhary K, et al. Epilepsy surgery in a pediatric population: a retrospective study of 129 children from a tertiary care hospital in a developing country along with assessment of quality of life. Pediatr Neurosurg. 2011;47(3):186–93.

    PubMed  Google Scholar 

  45. Griffiths SY, Sherman EM, Slick DJ, et al. Postsurgical health-related quality of life (HRQOL) in children following hemispherectomy for intractable epilepsy. Epilepsia. 2007;48(3):564–70.

    PubMed  Google Scholar 

  46. Maragkos GA, Geropoulos G, Kechagias K, et al. Quality of life after epilepsy surgery in children: a systematic review and meta-analysis. Neurosurgery. 2019;85:741–9.

    Google Scholar 

  47. Krsek P, Maton B, Korman B, Pacheco-Jacome E, Jayakar P, Dunoyer C, et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol. 2008;63(6):758–69.

    PubMed  Google Scholar 

  48. Sarkis RA, Jehi L, Najm IM, Kotagal P, Bingaman WE. Seizure outcomes following multilobar epilepsy surgery. Epilepsia. 2012;53(1):44–50.

    PubMed  Google Scholar 

  49. Boshuisen K, van Schooneveld MMJ, Leijten FSS, de Kort GAP, van Rijen PC, Gosselaar PH, et al. Contralateral MRI abnormalities affect seizure and cognitive outcome after hemispherectomy. Neurology. 2010;75(18):1623–30.

    CAS  PubMed  Google Scholar 

  50. Moosa ANV, Gupta A, Jehi L, Marashly A, Cosmo G, Lachhwani D, et al. Longitudinal seizure outcome and prognostic predictors after hemispherectomy in 170 children. Neurology. 2013;80(3):253–60.

    PubMed  Google Scholar 

  51. Englot DJ, Berger MS, Barbaro NM, Chang EF. Predictors of seizure freedom after resection of supratentorial low-grade gliomas. A review. J Neurosurg. 2011;115(2):240–4.

    PubMed  Google Scholar 

  52. Ramantani G, Kadish NE, Anastasopoulos C, Brandt A, Wagner K, Strobl K, et al. Epilepsy surgery for glioneuronal tumors in childhood: avoid loss of time. Neurosurgery. 2014;74(6):648–57; discussion 657.

    PubMed  Google Scholar 

  53. Bast T, Ramantani G, Seitz A, Rating D. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurol Scand. 2006;113(2):72–81.

    CAS  PubMed  Google Scholar 

  54. Chern JJ, Patel AJ, Jea A, Curry DJ, Comair YG. Surgical outcome for focal cortical dysplasia: an analysis of recent surgical series. J Neurosurg Pediatr. 2010;6(5):452–8.

    PubMed  Google Scholar 

  55. Ramantani G, Zentner J. In reply: avoid loss of time. Neurosurgery. 2014;75(2):E197–8.

    PubMed  Google Scholar 

  56. Martinez-Lizana E, Fauser S, Brandt A, Schuler E, Wiegand G, Doostkam S, et al. Long-term seizure outcome in pediatric patients with focal cortical dysplasia undergoing tailored and standard surgical resections. Seizure. 2018;62:66–73.

    PubMed  Google Scholar 

  57. Krsek P, Maton B, Jayakar P, Dean P, Korman B, Rey G, et al. Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology. 2009;72(3):217–23.

    CAS  PubMed  Google Scholar 

  58. Liava A, Francione S, Tassi L, Lo Russo G, Cossu M, Mai R, et al. Individually tailored extratemporal epilepsy surgery in children: anatomo-electro-clinical features and outcome predictors in a population of 53 cases. Epilepsy Behav. 2012;25(1):68–80.

    PubMed  Google Scholar 

  59. Paolicchi JM, Jayakar P, Dean P, Yaylali I, Morrison G, Prats A, et al. Predictors of outcome in pediatric epilepsy surgery. Neurology. 2000;54(3):642–7.

    CAS  PubMed  Google Scholar 

  60. Maillard L, Ramantani G. Epilepsy surgery for polymicrogyria: a challenge to be undertaken. Epileptic Disord. 2018;20(5):319–38.

    PubMed  Google Scholar 

  61. Ramantani G, Koessler L, Colnat-Coulbois S, Vignal J-P, Isnard J, Catenoix H, et al. Intracranial evaluation of the epileptogenic zone in regional infrasylvian polymicrogyria. Epilepsia. 2013;54(2):296–304.

    PubMed  Google Scholar 

  62. Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia. 2015;56(11):1669–86.

    CAS  PubMed  Google Scholar 

  63. Chassoux F, Landré E, Mellerio C, Turak B, Mann MW, Daumas-Duport C, et al. Type II focal cortical dysplasia: electroclinical phenotype and surgical outcome related to imaging. Epilepsia. 2012;53(2):349–58.

    PubMed  Google Scholar 

  64. Tassi L, Pasquier B, Minotti L, Garbelli R, Kahane P, Benabid AL, et al. Cortical dysplasia: electroclinical, imaging, and neuropathologic study of 13 patients. Epilepsia. 2001;42(9):1112–23.

    CAS  PubMed  Google Scholar 

  65. Robertson FC, Ullrich NJ, Manley PE, Al-Sayegh H, Ma C, Goumnerova LC. The impact of intraoperative electrocorticography on seizure outcome after resection of pediatric brain tumors: a cohort study. Neurosurgery. 2019;85(3):375–83.

    PubMed  Google Scholar 

  66. West S, Nolan SJ, Newton R. Surgery for epilepsy: a systematic review of current evidence. Epileptic Disord. 2016;18(2):113–21.

    PubMed  Google Scholar 

  67. Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13(11):1114–26.

    PubMed  Google Scholar 

  68. Arya R, Tenney JR, Horn PS, Greiner HM, Holland KD, Leach JL, et al. Long-term outcomes of resective epilepsy surgery after invasive presurgical evaluation in children with tuberous sclerosis complex and bilateral multiple lesions. J Neurosurg Pediatr. 2015;15(1):26–33.

    PubMed  Google Scholar 

  69. Simasathien T, Vadera S, Najm I, Gupta A, Bingaman W, Jehi L. Improved outcomes with earlier surgery for intractable frontal lobe epilepsy. Ann Neurol. 2013;73(5):646–54.

    PubMed  Google Scholar 

  70. Cross JH, Jayakar P, Nordli D, Delalande O, Duchowny M, Wieser HG, et al. Proposed criteria for referral and evaluation of children for epilepsy surgery: recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia. 2006;47(6):952–9.

    PubMed  Google Scholar 

  71. Dalmagro CL, Bianchin MM, Velasco TR, Alexandre V, Walz R, Terra-Bustamante VC, et al. Clinical features of patients with posterior cortex epilepsies and predictors of surgical outcome. Epilepsia. 2005;46(9):1442–9.

    PubMed  Google Scholar 

  72. Edelvik A, Rydenhag B, Olsson I, Flink R, Kumlien E, Källén K, et al. Long-term outcomes of epilepsy surgery in Sweden: a national prospective and longitudinal study. Neurology. 2013;81(14):1244–51.

    PubMed  PubMed Central  Google Scholar 

  73. Englot DJ, Chang EF. Rates and predictors of seizure freedom in resective epilepsy surgery: an update. Neurosurg Rev. 2014;37(3):389–404; discussion 404–5.

    PubMed  PubMed Central  Google Scholar 

  74. Engel J Jr, Van Ness PC, Rasmussen TB, Ojemann LM. Outcome with respect to epileptic seizures. In: Engel Jr J, editor. Surgical treatment of the epilepsies. New York: Raven Press; 1993. p. 609–21.

    Google Scholar 

  75. Greiner HM, Horn PS, Arya R, Holland K, Turner M, Alsaidi MH, et al. Acute postoperative seizures and long-term outcome following pediatric epilepsy surgery. Seizure. 2014;23(6):483–6.

    PubMed  Google Scholar 

  76. Mani J, Gupta A, Mascha E, Lachhwani D, Prakash K, Bingaman W, et al. Postoperative seizures after extratemporal resections and hemispherectomy in pediatric epilepsy. Neurology. 2006;66(7):1038–43.

    CAS  PubMed  Google Scholar 

  77. Park K, Buchhalter J, McClelland R, Raffel C. Frequency and significance of acute postoperative seizures following epilepsy surgery in children and adolescents. Epilepsia. 2002;43(8):874–81.

    PubMed  Google Scholar 

  78. Helmstaedter C, Beeres K, Elger CE, et al. Cognitive outcome of pediatric epilepsy surgery across ages and different types of surgeries: a monocentric 1-year follow-up study in 306 patients of school age. Eur J Epilepsy. 2019; https://doi.org/10.1016/j.seizure.2019.07.021.

  79. Hermann BP, Seidenberg M, Bell B. The neurodevelopmental impact of childhood onset temporal lobe epilepsy on brain structure and function and the risk of progressive cognitive effects. Brain Res. 2002;135:429–38.

    Google Scholar 

  80. Gleissner U, Sassen R, Schramm J, Elger CE, Helmstaedter C. Greater functional recovery after temporal lobe epilepsy surgery in children. Brain J Neurol. 2005;128(Pt 12):2822–9.

    CAS  Google Scholar 

  81. Helmstaedter C, Roeske S, Kaaden S, Elger CE, Schramm J. Hippocampal resection length and memory outcome in selective epilepsy surgery. J Neurol Neurosurg Psychiatry. 2011;82(12):1375–81.

    Google Scholar 

  82. Helmstaedter C, Roeske S, Kaaden S, et al. Hippocampal resection length and memory outcome in selective epilepsy surgery. J Neurol Neurosurg Psychiatry. 2011; https://doi.org/10.1136/jnnp.2010.240176.

  83. Helmstaedter C, Petzold I, Bien CG. The cognitive consequence of resecting nonlesional tissues in epilepsy surgery–results from MRI- and histopathology-negative patients with temporal lobe epilepsy.Epilepsia. 2011;52(8):1402–8.

    Google Scholar 

  84. Boshuisen K, van Schooneveld MMJ, Uiterwaal CSPM, Cross JH, Harrison S, Polster T, et al. Intelligence quotient improves after antiepileptic drug withdrawal following pediatric epilepsy surgery. Ann Neurol. 2015;78(1):104–14.

    CAS  PubMed  Google Scholar 

  85. Helmstaedter C, Elger CE, Witt JA.The effect of quantitative and qualitative antiepileptic drug changes on cognitive recovery after epilepsy surgery. Seizure. 2016;36:63–9.

    Google Scholar 

  86. Hoppe C, Porebska I, Beeres K, et al. Parents’ view of the cognitive outcome one year after pediatric epilepsy surgery. Epilepsy Behav. 2019; https://doi.org/10.1016/j.yebeh.2019.106552.

  87. Clary LE, Vander Wal JS, Titus JB. Examining health-related quality of life, adaptive skills, and psychological functioning in children and adolescents with epilepsy presenting for a neuropsychological evaluation. Epilepsy Behav. 2010;19(3):487–93.

    Google Scholar 

  88. Spooner CG, Berkovic SF, Mitchell LA, Wrennall JA, Harvey AS. New-onset temporal lobe epilepsy in children: lesion on MRI predicts poor seizure outcome. Neurology. 2006;67(12):2147–53.

    CAS  PubMed  Google Scholar 

  89. Wirrell EC. Predicting pharmacoresistance in pediatric epilepsy. Epilepsia. 2013;54(Suppl 2):19–22.

    CAS  PubMed  Google Scholar 

  90. Ramantani G, Holthausen H. Epilepsy after cerebral infection: review of the literature and the potential for surgery. Epileptic Disord. 2017;19(2):117–36.

    PubMed  Google Scholar 

  91. Neligan A, Haliasos N, Pettorini B, Harkness WFJ, Solomon JK. A survey of adult and pediatric epilepsy surgery in the United Kingdom. Epilepsia. 2013;54(5):e62–5.

    PubMed  Google Scholar 

  92. Mohamed A, Wyllie E, Ruggieri P, Kotagal P, Babb T, Hilbig A, et al. Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology. 2001;56(12):1643–9.

    CAS  PubMed  Google Scholar 

  93. Hauptman JS, Mathern GW. Surgical treatment of epilepsy associated with cortical dysplasia: 2012 update. Epilepsia. 2012;53(Suppl 4):98–104.

    PubMed  Google Scholar 

  94. Englot DJ, Rolston JD, Wang DD, Sun PP, Chang EF, Auguste KI. Seizure outcomes after temporal lobectomy in pediatric patients. J Neurosurg Pediatr. 2013;12(2):134–41.

    PubMed  Google Scholar 

  95. Ormond DR, Clusmann H, Sassen R, et al. Pediatric Temporal Lobe Epilepsy Surgery in Bonn and Review of the Literature. Neurosurgery. 2018; https://doi.org/10.1093/neuros/nyy125.

  96. Benifla M, Otsubo H, Ochi A, Weiss SK, Donner EJ, Shroff M, et al. Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery. 2006;59(6):1203–13; discussion 1213–14.

    PubMed  Google Scholar 

  97. Miserocchi A, Cascardo B, Piroddi C, Fuschillo D, Cardinale F, Nobili L, et al. Surgery for temporal lobe epilepsy in children: relevance of presurgical evaluation and analysis of outcome. J Neurosurg Pediatr. 2013;11(3):256–67.

    PubMed  Google Scholar 

  98. Smyth MD, Limbrick DD, Ojemann JG, Zempel J, Robinson S, O’Brien DF, et al. Outcome following surgery for temporal lobe epilepsy with hippocampal involvement in preadolescent children: emphasis on mesial temporal sclerosis. J Neurosurg. 2007;106(3 Suppl):205–10.

    PubMed  Google Scholar 

  99. Téllez-Zenteno JF, Dhar R, Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain J Neurol. 2005;128(Pt 5):1188–98.

    Google Scholar 

  100. Gleissner U, Sassen R, Lendt M, Clusmann H, Elger CE, Helmstaedter C. Pre- and postoperative verbal memory in pediatric patients with temporal lobe epilepsy. Epilepsy Res. 2002;51(3):287–96.

    CAS  PubMed  Google Scholar 

  101. Freitag H, Tuxhorn I. Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia. 2005;46(4):561–7.

    PubMed  Google Scholar 

  102. Gleissner U, Clusmann H, Sassen R, Elger CE, Helmstaedter C. Postsurgical outcome in pediatric patients with epilepsy: a comparison of patients with intellectual disabilities, subaverage intelligence, and average-range intelligence. Epilepsia. 2006;47(2):406–14.

    PubMed  Google Scholar 

  103. Skirrow C, Cross JH, Owens R, Weiss-Croft L, Martin-Sanfilippo P, Banks T, et al. Determinants of IQ outcome after focal epilepsy surgery in childhood: a longitudinal case-control neuroimaging study. Epilepsia. 2019;60(5):872–84.

    PubMed  Google Scholar 

  104. D’Argenzio L, Colonnelli MC, Harrison S, Jacques TS, Harkness W, Scott RC, et al. Seizure outcome after extratemporal epilepsy surgery in childhood. Dev Med Child Neurol. 2012;54(11):995–1000.

    PubMed  Google Scholar 

  105. Blount JP. Extratemporal resections in pediatric epilepsy surgery-an overview. Epilepsia. 2017;58(Suppl 1):19–27.

    PubMed  Google Scholar 

  106. Liava A, Mai R, Tassi L, Cossu M, Sartori I, Nobili L, et al. Paediatric epilepsy surgery in the posterior cortex: a study of 62 cases. Epileptic Disord. 2014;16(2):141–64.

    PubMed  Google Scholar 

  107. Englot DJ, Breshears JD, Sun PP, Chang EF, Auguste KI. Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients. J Neurosurg Pediatr. 2013;12(2):126–33.

    PubMed  Google Scholar 

  108. Kasasbeh AS, Yarbrough CK, Limbrick DD, Steger-May K, Leach JL, Mangano FT, et al. Characterization of the supplementary motor area syndrome and seizure outcome after medial frontal lobe resections in pediatric epilepsy surgery. Neurosurgery. 2012;70(5):1152–68.

    PubMed  Google Scholar 

  109. Kral T, Kuczaty S, Blümcke I, Urbach H, Clusmann H, Wiestler OD, et al. Postsurgical outcome of children and adolescents with medically refractory frontal lobe epilepsies. Childs Nerv Syst. 2001;17(10):595–601.

    CAS  PubMed  Google Scholar 

  110. Vachhrajani S, de Ribaupierre S, Otsubo H, Ochi A, Weiss SK, Donner EJ, et al. Neurosurgical management of frontal lobe epilepsy in children. J Neurosurg Pediatr. 2012;10(3):206–16.

    PubMed  Google Scholar 

  111. Englot DJ, Wang DD, Rolston JD, Shih TT, Chang EF. Rates and predictors of long-term seizure freedom after frontal lobe epilepsy surgery: a systematic review and meta-analysis. J Neurosurg. 2012;116(5):1042–8.

    PubMed  Google Scholar 

  112. Janszky J, Jokeit H, Schulz R, Hoppe M, Ebner A. EEG predicts surgical outcome in lesional frontal lobe epilepsy. Neurology. 2000;54(7):1470–6.

    CAS  PubMed  Google Scholar 

  113. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Lüders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130(Pt 2):574–84.

    PubMed  Google Scholar 

  114. Pinheiro-Martins AP, Bianchin MM, Velasco TR, Terra VC, Araújo D, Wichert-Ana L, et al. Independent predictors and a prognostic model for surgical outcome in refractory frontal lobe epilepsy. Epilepsy Res. 2012;99(1–2):55–63.

    PubMed  Google Scholar 

  115. D’Agostino MD, Bastos A, Piras C, Bernasconi A, Grisar T, Tsur VG, et al. Posterior quadrantic dysplasia or hemi-hemimegalencephaly: a characteristic brain malformation. Neurology. 2004;62(12):2214–20.

    PubMed  Google Scholar 

  116. Sinclair DB, Wheatley M, Snyder T, Gross D, Ahmed N. Posterior resection for childhood epilepsy. Pediatr Neurol. 2005;32(4):257–63.

    PubMed  Google Scholar 

  117. Ibrahim GM, Fallah A, Albert GW, Withers T, Otsubo H, Ochi A, et al. Occipital lobe epilepsy in children: characterization, evaluation and surgical outcomes. Epilepsy Res. 2012;99(3):335–45.

    PubMed  Google Scholar 

  118. Yang P-F, Mei Z, Lin Q, Pei J-S, Zhang H-J, Zhong Z-H, et al. Disconnective surgery in posterior quadrantic epilepsy: a series of 12 paediatric patients. Epileptic Disord. 2014;16(3):296–304.

    PubMed  Google Scholar 

  119. Teutonico F, Mai R, Veggiotti P, Francione S, Tassi L, Borrelli P, et al. Epilepsy surgery in children: evaluation of seizure outcome and predictive elements. Epilepsia. 2013;54(Suppl 7):70–6.

    PubMed  Google Scholar 

  120. Cepeda C, André VM, Levine MS, Salamon N, Miyata H, Vinters HV, et al. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav. 2006;9(2):219–35.

    PubMed  Google Scholar 

  121. Lerner JT, Salamon N, Hauptman JS, Velasco TR, Hemb M, Wu JY, et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia. 2009;50(6):1310–35.

    PubMed  Google Scholar 

  122. Kalbhenn T, Cloppenborg T, Wörmann FG, et al. Operative posterior disconnection in epilepsy surgery: Experience with 29 patients. Epilepsia. 2019;60:1973–83.

    Google Scholar 

  123. Jayakar P, Dunoyer C, Dean P, Ragheb J, Resnick T, Morrison G, et al. Epilepsy surgery in patients with normal or nonfocal MRI scans: integrative strategies offer long-term seizure relief. Epilepsia. 2008;49(5):758–64.

    PubMed  Google Scholar 

  124. Kogias E, Schmeiser B, Doostkam S, Brandt A, Hammen T, Zentner J, et al. Multilobar resections for 3T MRI-negative epilepsy: worth the trouble? World Neurosurg. 2019; https://doi.org/10.1016/j.wneu.2018.11.170.

  125. Cho EB, Joo EY, Seo D-W, Hong S-C, Hong SB. Prognostic role of functional neuroimaging after multilobar resection in patients with localization-related epilepsy. PLoS One. 2015;10(8):e0136565.

    PubMed  PubMed Central  Google Scholar 

  126. Gaillard WD, Chiron C, Cross JH, Harvey AS, Kuzniecky R, Hertz-Pannier L, et al. Guidelines for imaging infants and children with recent-onset epilepsy. Epilepsia. 2009;50(9):2147–53.

    PubMed  Google Scholar 

  127. Brockhaus A, Elger CE. Complex partial seizures of temporal lobe origin in chil- dren of different age groups. Epilepsia. 1995;36:1173–81.

    Google Scholar 

  128. Vasung L, Fischi-Gomez E, Hüppi PS. Multimodality evaluation of the pediatric brain: DTI and its competitors. Pediatr Radiol. 2013;43(1):60–8.

    PubMed  Google Scholar 

  129. Bittar RG, Rosenfeld JV, Klug GL, Hopkins IJ, Harvey AS. Resective surgery in infants and young children with intractable epilepsy. J Clin Neurosci. 2002;9(2):142–6.

    PubMed  Google Scholar 

  130. Cossu M, Schiariti M, Francione S, Fuschillo D, Gozzo F, Nobili L, et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr. 2012;9(3):290–300.

    PubMed  Google Scholar 

  131. Gowda S, Salazar F, Bingaman WE, Kotagal P, Lachhwani DL, Gupta A, et al. Surgery for catastrophic epilepsy in infants 6 months of age and younger. J Neurosurg Pediatr. 2010;5(6):603–7.

    PubMed  Google Scholar 

  132. Taussig D, Dorfmüller G, Fohlen M, Jalin C, Bulteau C, Ferrand-Sorbets S, et al. Invasive explorations in children younger than 3 years. Seizure. 2012;21(8):631–8.

    PubMed  Google Scholar 

  133. Weiss HK, Bandt SK. Epilepsy Surgery in Children Under Three Years of Age. Pediatr Neurol Briefs. 2019;33:3.

    Google Scholar 

  134. Vasconcellos E, Wyllie E, Sullivan S, Stanford L, Bulacio J, Kotagal P, et al. Mental retardation in pediatric candidates for epilepsy surgery: the role of early seizure onset. Epilepsia. 2001;42(2):268–74.

    CAS  PubMed  Google Scholar 

  135. Nabbout R, Dulac O. Epileptic encephalopathies: a brief overview. J Clin Neurophysiol. 2003;20(6):393–7.

    PubMed  Google Scholar 

  136. Ebus S, Arends J, Hendriksen J, van der Horst E, de la Parra N, Hendriksen R, et al. Cognitive effects of interictal epileptiform discharges in children. Eur J Paediatr Neurol. 2012;16(6):697–706.

    CAS  PubMed  Google Scholar 

  137. Nolan MA, Redoblado MA, Lah S, Sabaz M, Lawson JA, Cunningham AM, et al. Intelligence in childhood epilepsy syndromes. Epilepsy Res. 2003;53(1–2):139–50.

    PubMed  Google Scholar 

  138. Vendrame M, Alexopoulos AV, Boyer K, Gregas M, Haut J, Lineweaver T, et al. Longer duration of epilepsy and earlier age at epilepsy onset correlate with impaired cognitive development in infancy. Epilepsy Behav. 2009;16(3):431–5.

    PubMed  Google Scholar 

  139. Cossu M, Cardinale F, Castana L, Nobili L, Sartori I, Lo Russo G. Stereo-EEG in chil- dren. Childs Nerv Syst. 2006;22:766–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). Pediatric Epilepsy Surgery. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_11

Download citation

Publish with us

Policies and ethics