Skip to main content

MRI-Negative Epilepsies

  • Chapter
  • First Online:
Surgical Treatment of Epilepsies
  • 500 Accesses

Abstract

The term “MRI-negative” means the absence of an MRI-detectable lesion, while the term “non-lesional” refers to the absence of a specific abnormality on pathological evaluation. During the last years, the quality of MRI has enormously improved facilitating detection of subtle lesions to the range of 1 mm3, that is to an accuracy approximating histopathological analysis. Therefore, from today’s view, the synonymous use of the terms “MRI-negative” and “non-lesional” seems to be justified. MRI-negative epilepsies constitute a heterogeneous group of focal epilepsies amounting to 20–40% (dependent on quality of MRI) of surgical candidates in epilepsy centers. MRI-negative temporal lobe epilepsy seems to represent a distinct syndrome associated with a milder course of the disease and better drug response as compared to classical mesiotemporal lobe epilepsy caused by hippocampal sclerosis and has been thought to primarily involve neocortical rather than mesiotemporal structures. Thus, classical anterior temporal lobectomy may be the treatment of choice for this entity. Surgical results in MRI-negative epilepsies are less favorable as compared with lesional cases. However, careful selection of appropriate candidates using noninvasive and invasive EEG recordings and radionuclide imaging facilitates seizure-free outcome mainly ranging between 40% and 50% in temporal and between 30% and 40% in extratemporal and multilobar procedures.

Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.

Marie Curie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinclair DB, Wheatley M, Aronyk K, Hao C, Snyder T, Colmers W, McKean JD. Pathology and neuroimaging in pediatric temporal lobectomy for intractable epilepsy. Pediatr Neurosurg. 2001;35:239–46.

    Article  CAS  PubMed  Google Scholar 

  2. Téllez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89:310–8. https://doi.org/10.1016/j.eplepsyres.2010.02.007.

    Article  PubMed  Google Scholar 

  3. So EL, Ryvlin P. MRI-negative epilepsy. Cambridge: Cambridge University Press; 2015.

    Book  Google Scholar 

  4. Siegel AM, Jobst BC, Thadani VM, Rhodes CH, Lewis PJ, Roberts DW, et al. Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia. 2001;42:883–8.

    Article  CAS  PubMed  Google Scholar 

  5. Pardoe H, Kuzniecky R. Advanced Imaging Techniques in the Diagnosis of Nonlesional Epilepsy: MRI, MRS, PET, and SPECT. Epilepsy Currents. 2014; 14 (3): 121–4.

    Google Scholar 

  6. So EL, Lee RW. Epilepsy surgery in MRI-negative epilepsies. Curr Opin Neurol. 2014;27:206–12.

    Article  PubMed  Google Scholar 

  7. Toledano R, Jimenez-Huete A, Campo P, et al. Small temporal pole encephalocele: a hidden cause of “normal” MRI temporal lobe epilepsy. Epilepsia. 2016;57:841–51.

    Article  PubMed  Google Scholar 

  8. Winston GP. Epilepsy surgery, vision, and driving: What has surgery taught us and could modern imaging reduce the risk of visual deficits? Epilepsia. 2013;54(11):1877–88.

    Google Scholar 

  9. Jin B, Krishnan B, Adler S, et al. Automated detection of focal cortical dysplasia type II with surface-based magnetic resonance imaging postprocessing and machine learning. Epilepsia. 2018;59:982–92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wagner J, Weber B, Urbach H, et al. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011a;134(10):2844–54.

    Google Scholar 

  11. Wagner J, Urbach H, Niehusmann P, et al. Focal cortical dysplasia type IIb: completeness of cortical, not subcortical, resection is necessary for seizure freedom. Epilepsia. 2011b;52 (8):1418–24.

    Google Scholar 

  12. Wang ZI, Jones SE, Jaisani Z, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol. 2015;77(6):1060–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Delev D, Quesada CM, Grote A. A multimodal concept for invasive diagnostics and surgery based on neuronavigated voxel-based morphometric MRI postprocessing data in previously nonlesional epilepsy. J Neurosurg. 2018;128(4):1178–86.

    Article  PubMed  Google Scholar 

  14. Coan AC, Kubota B, Bergo FPG, et al. 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol. 2014;35:77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goubran M, Bernhardt BC, Cantor-Rivera D, et al. In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy. Hum Brain Mapp. 2016;37:1103–19.

    Article  PubMed  Google Scholar 

  16. Urbach H, Mast H, Egger K, Mader I. Presurgical MR imaging in epilepsy. Clin Neuroradiol. 2015;25(Suppl 2):151–5.

    Article  PubMed  Google Scholar 

  17. Muhlhofer W, Tan Y-L, Mueller S, Knowlton R. MRI-negative temporal lobe epilepsy—what do we know? Epilepsia. 2017; https://doi.org/10.1111/epi.13699.

  18. Bien CG, Szinay M, Wagner J, et al. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol. 2009;66:1491–9. https://doi.org/10.1001/archneurol.2009.283.

    Article  PubMed  Google Scholar 

  19. Carne RP, O’Brien TJ, Kilpatrick CJ, MacGregor LR, Hicks RJ, Murphy MA, Bowden SC, Kaye AH, Cook MJ. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain. 2004;127:2276–85.

    Article  CAS  PubMed  Google Scholar 

  20. Cascino GD, Jack CRJ, Parisi JE, et al. Magnetic resonance imaging based volume studies in temporal lobe epilepsy: pathological correlations. Ann Neurol. 1991;30:31–6.

    Article  CAS  PubMed  Google Scholar 

  21. Englot DJ, Ouyang D, Garcia PA, et al. Epilepsy surgery trends in the United States, 1990–2008. Neurology. 2012;78:1200–6. https://doi.org/10.1212/WNL.0b013e318250d7ea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong KS, Lee SK, Kim JY, Lee DS, Chung CK. Presurgical evaluation and surgical outcome of 41 patients with nonlesional neocortical epilepsy. Seizure. 2002;11:184–92.

    Article  PubMed  Google Scholar 

  23. Kutsy RL. Focal extratemporal epilepsy: clinical features, EEG patterns, and surgical approach. J Neurol Sci. 1999;166:1–15.

    Article  CAS  PubMed  Google Scholar 

  24. Semah F, Picot MC, Adam C, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51:1256–62.

    Article  CAS  PubMed  Google Scholar 

  25. Bell ML, Rao S, So EL, et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia. 2009;50:2053–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burkholder DB, Sulc V, Hoffman EM, et al. Interictal scalp electroencephalography and intraoperative electrocorticography in magnetic resonance imaging-negative temporal lobe epilepsy surgery. JAMA Neurol. 2014;71:702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cukiert A, Burattini JA, Mariani PP, et al. Outcome after corticoamygdalohippocampectomy in patients with temporal lobe epilepsy and normal MRI. Seizure. 2010;19:319–23.

    Article  PubMed  Google Scholar 

  28. Fong JS, Lehi L, Najm I, et al. Seizure outcome and its predictors after temporal lobe epilepsy surgery in patients with normal MRI. Epilepsia. 2011;52:1393–401. https://doi.org/10.1111/j.1528-1167.2011.03091.x.

    Article  PubMed  Google Scholar 

  29. Kuba R, Tyrlikova I, Chrastina J, et al. “MRI-negative PET-positive” temporal lobe epilepsy: invasive EEG findings, histopathology, and postoperative outcomes. Epilepsy Behav. 2011;22:537–41.

    Article  PubMed  Google Scholar 

  30. Lee RW, Hoogs MM, Burkholder DB, et al. Outcome of intracranial electroencephalography monitoring and surgery in magnetic resonance imaging-negative temporal lobe epilepsy. Epilepsy Res. 2014;108:937–44.

    Article  PubMed  Google Scholar 

  31. Smith AP, Sani S, Kanner AM, et al. Medically intractable temporal lobe epilepsy in patients with normal MRI: surgical outcome in twenty-one consecutive patients. Seizure. 2011;20:475–9.

    Article  PubMed  Google Scholar 

  32. Suresh S, Sweet J, Fastenau PS, et al. Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study. J Neurosurg. 2015;23:1368–74.

    Article  Google Scholar 

  33. Sylaja PN, Radhakrishnan K, Kesavadas C, Sarma PS. Seizure outcome after anterior temporal lobectomy and its predictors in patients with apparent temporal lobe epilepsy and normal MRI. Epilepsia. 2004;45(7):803–8.

    Article  CAS  PubMed  Google Scholar 

  34. Vale FL, Effio E, Arredondo N, et al. Efficacy of temporal lobe surgery for epilepsy in patients with negative MRI for mesial temporal lobe sclerosis. J Clin Neurosci. 2012;19:101–6.

    PubMed  Google Scholar 

  35. Jayakar P, Dunoyer C, Dean P, et al. Epilepsy surgery in patients with normal or nonfocal MRI scans: Integrative strategies offer long-term seizure relief. Epilepsia. 2008;49(5):758–64.

    PubMed  Google Scholar 

  36. Kogias E, Schmeiser B, Dooskamp S, et al. Multilobar resections for 3T MRI-negative epilepsy: worth the trouble? World Neurosurg. 2019; https://doi.org/10.1016/j.wneu.2018.11.170.

  37. Immonen L, Jutila A, Muraja-Murro E, Mervaala M, Äikiä S. Lamusuo, et al., Long-term epilepsy surgery outcomes in patients with MRI-negative temporal lobe epilepsy. Epilepsia. 2010;51:2260–9. https://doi.org/10.1111/j.1528-1167.2010.02720.x.

    Article  PubMed  Google Scholar 

  38. Bast T, Ramantani G, Boppel T, et al. Source analysis of interictal spikes in polymicrogyria: loss of relevant cortical fissures requires simultaneous EEG to avoid MEG misinterpretation. NeuroImage. 2005;25:1232–41.

    PubMed  Google Scholar 

  39. Chassoux F, Rodrigo S, Semah F, et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology. 2010;75:2168–75.

    CAS  PubMed  Google Scholar 

  40. Davis KA, Nanga RPR, Das S, et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med. 2015;7:309ra161. https://doi.org/10.1126/scitranslmed.aaa7095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Krsek P, Kudr M, Jahodova A, et al. Localizing value of ictal SPECT is comparable to MRI and EEG in children with focal cortical dysplasia. Epilepsia. 2013;54:351–8.

    PubMed  Google Scholar 

  42. O’Brien TJ, So EL, Cascino GD, et al. Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia. 2004;45:367–76.

    PubMed  Google Scholar 

  43. Ramantani G, Boor R, Paetau R, et al. MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol. 2006;23:498–508.

    PubMed  Google Scholar 

  44. Brodbeck V, Spinelli L, Lascano AM, et al. Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia. 2010;51:583–91.

    PubMed  Google Scholar 

  45. Ramantani G, Dümpelmann M, Koessler L, et al. Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources. Epilepsia. 2014;55:278–88.

    PubMed  Google Scholar 

  46. Rikir E, Koessler L, Gavaret M, et al. Electrical source imaging in cortical malformation-related epilepsy: a prospective EEG-SEEG concordance study. Epilepsia. 2014;55:918–32.

    PubMed  Google Scholar 

  47. Jacobs J, Menzel A, Ramantani G, et al. Negative BOLD in default-mode structures measured with EEG-MREG is larger in temporal than extratemporal epileptic spikes. Front Neurosci. 2014;8:335.

    PubMed  PubMed Central  Google Scholar 

  48. Jacobs J, Stich J, Zahneisen B, et al. Fast fMRI provides high statistical power in the analysis of epileptic networks. NeuroImage. 2014;88:282–94.

    PubMed  Google Scholar 

  49. Jäger V, Dümpelmann M, LeVan P, et al. Concordance of epileptic networks associated with epileptic spikes measured by high-density EEG and fast fMRI. PLoS One. 2015;10:e0140537.

    PubMed  PubMed Central  Google Scholar 

  50. Luther N, Rubens E, Sethi N, et al. The value of intraoperative electrocorticography in surgical decision making for temporal lobe epilepsy with normal MRI. Epilepsia. 2011;52:941–8.

    PubMed  PubMed Central  Google Scholar 

  51. Kogias E, Evangelou P, Schmeiser B, et al. The oxymoron of image-guided resection in 3 T MRI-negative extratemporal epilepsy: technique and postoperative results. Clin Neurol Neurosurg. 2018;166:16–22.

    PubMed  Google Scholar 

  52. Kogias E, Altenmüller D-M, Klingler J-J, et al. Histopathology of 3 Tesla MRI-negative temporal lobe epilepsies. J Clin Neurosci. 2018;47:273–7.

    PubMed  Google Scholar 

  53. Gok B, Jallo G, Hayeri R, et al. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology. 2013;55:541–50.

    PubMed  Google Scholar 

  54. Doelken MT, Mennecke A, Huppertz HJ, et al. Multimodality approach in cryptogenic epilepsy with focus on morphometric 3T MRI. J Neuroradiol. 2012;39:87–96.

    CAS  PubMed  Google Scholar 

  55. Rubí S, Setoain X, Donaire A, et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia. 2011;52:2216–24.

    PubMed  Google Scholar 

  56. Chassoux F, Devaux B, Landré E, et al. Stereoelectroencephalography in focal cortical dysplasia: a 3D approach to delineating the dysplastic cortex. Brain. 2000;123:1733–51.

    PubMed  Google Scholar 

  57. Salamon N, Kung J, Shaw SJ, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71:1594–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Colombo N, Salamon N, Raybaud C, et al. Imaging of malformations of cortical development. Epileptic Disord. 2009;11:194–205.

    PubMed  Google Scholar 

  59. O’Brien T, So E, Mullan P, et al. Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology. 2000;55:1668–76.

    PubMed  Google Scholar 

  60. Lee SK, Lee SY, Kim KK, Hong KS, Lee DS, Chung CK. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol. 2005;58:525–32.

    PubMed  Google Scholar 

  61. Jung J, Bouet R, Delpuech C, et al. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain. 2013;136:3176–86.

    PubMed  PubMed Central  Google Scholar 

  62. Smith JR, King DW, Park YD, et al. A 10-year experience with magnetic source imaging in the guidance of epilepsy surgery. Stereotact Funct Neurosurg. 2003;80:14–7.

    PubMed  Google Scholar 

  63. Oishi M, Kameyama S, Masuda H, et al. Single and multiple clusters of magnetoencephalographic dipoles in neocortical epilepsy: significance in characterizing the epileptogenic zone. Epilepsia. 2006;47:355–64.

    PubMed  Google Scholar 

  64. Liava A, Francione S, Tassi L, Lo Russo G, Cossu M, Mai R, et al. Individually tailored extratemporal epilepsy surgery in children: anatomo-electro-clinical features and outcome predictors in a population of 53 cases. Epilepsy Behav. 2012; 25(1):68–80.

    Google Scholar 

  65. Alarcón G, Valentin A, Watt C, Selway RP, Lacruz ME, Elwes RD, Jarosz JM, Honavar M, Brunhuber F, Mullatti N, Bodi I, Salinas M, Binnie CD, Polkey CE. Is it worth pursuing surgery for epilepsy in patients with normal neuroimaging? J Neurol Neurosurg Psychiatry. 2006;77:474–80.

    PubMed  PubMed Central  Google Scholar 

  66. Blume W, Ganapathy GR, Munoz D, Lee DH. Indices of resective surgery effectiveness for intractable nonlesional focal epilepsy. Epilepsia. 2004;45(1):46–53.

    PubMed  Google Scholar 

  67. Chapman K, Wyllie E, Najm I, Ruggieri P, Bingaman W, Luders J, Kotagal P, Lachhwani D, Dinner D, Luders HO. Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J Neurol Neurosurg Psychiatry. 2005;76:710–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferrier CH, Engelsman J, Alarcon G, et al. Prognostic factors in presurgical assessment of frontal lobe epilepsy. J Neurol Neurosurg Psychiatry. 1999;66:350–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jeha LE, Najm IM, Bingaman WE, Khandwala F, Widdess-Walsh P, Morris HH, Dinner DS, Nair D, Foldvary-Schaeffer N, Prayson RA, Comair Y, O’Brien R, Bulacio J, Gupta A, Luders HO. Predictors of outcome after temporal lobectomy for the treatment of intractable epilepsy. Neurology. 2006;66:1938–40.

    CAS  PubMed  Google Scholar 

  70. Stavem K, Bjornaes H, Langmoen IA. Predictors of seizure outcome after temporal lobectomy for intractable epilepsy. Acta Neurol Scand. 2004;109:244–9.

    CAS  PubMed  Google Scholar 

  71. Wieshmann UC, Larkin D, Varma T, Eldridge P. Predictors of outcome after temporal lobectomy for refractory temporal lobe epilepsy. Acta Neurol Scand. 2008;118:306–12.

    CAS  PubMed  Google Scholar 

  72. Feng R, Hu J, Pan L, et al. Surgical treatment of MRI negative temporal lobe epilepsy based on PET: a retrospective cohort study. Stereotact Funct Neurosurg. 2014;92:354–9. https://doi.org/10.1159/000365575.

    Article  PubMed  Google Scholar 

  73. Cukiert A, Buratini JA, Machado E, et al. Results of surgery in patients with refractory extratemporal epilepsy with normal or nonlocalizing magnetic resonance findings investigated with subdural grids. Epilepsia. 2001a;42:889–94.

    Google Scholar 

  74. Kim S, Mountz JM. SPECT imaging of epilepsy: an overview and comparison with F-18 FDG PET. Int J Mol Imaging. 2011;2011(10):1–9.

    Google Scholar 

  75. Cohen-Gadol AA, Bradley CC, Williamson A, Kim JH, Westerveld M, Duckrow RB, Spencer DD. Normal magnetic resonance imaging and medial temporal lobe epilepsy: the clinical syndrome of paradoxical temporal lobe epilepsy. J Neurosurg. 2005;102:902–9.

    Google Scholar 

  76. Wang ZI, Alexopouzlos AV, Jones SE, et al. The pathology of magnetic-resonance imaging-negative epilepsy. Mod Pathol. 2013;26:1051–8.

    PubMed  Google Scholar 

  77. Ramachandran Nair R, Otsubo H, Shroff MM, Ochi A, Weiss SK, Rutka JT, Snead OC 3rd. MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia. 2007;48:149–57.

    Google Scholar 

  78. Berkovic SF, McIntosh AM, Kalnins RM, Jackson GD, Fabinyi GC, Brazenor GA, Bladin PF, Hopper JL. Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology. 1995;45:1358–63.

    Article  CAS  PubMed  Google Scholar 

  79. Kogias E, Klingler J-H, Urbach H, et al. 3 Tesla MRI-negative focal epilepsies: presurgical evaluation, postoperative outcome and predictive factors. Clin Neurol Neurosurg. 2017;163:116–20.

    Article  PubMed  Google Scholar 

  80. Scott CA, Fish DR, Smith SJM, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999;66:69–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Labate A, Aguglia U, Tripepi G, et al. Long-term outcome of mild mesial temporal lobe epilepsy: the National General Practice Study of Epilepsy. The syndromic classification of the International League Against Epilepsy applied to epilepsy in a general population. A prospective longitudinal cohort study. Neurology. 2016;86:1904–10.

    Article  PubMed  Google Scholar 

  82. Kim J, Kim SH, Lim SC, et al. Clinical characteristics of patients with benign nonlesional temporal lobe epilepsy. Neuropsychiatr Dis Treat. 2016;12:1887–91.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hernandez-Ronquillo L, Buckley S, Ladino LD, et al. How many adults with temporal epilepsy have a mild course and do not require epilepsy surgery? Epileptic Disord. 2016;18:137–47.

    Article  PubMed  Google Scholar 

  84. Aguglia U, Gambardella A, Le Piane E, et al. Mild non-lesional temporal lobe epilepsy. A common, unrecognized disorder with onset in adulthood. Can J Neurol Sci. 1998;25:282–6.

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi E, Lopes-Cendes I, Guerreiro CA, et al. Seizure outcome and hippocampal atrophy in familial mesial temporal lobe epilepsy. Neurology. 2001;56:166–72.

    Article  CAS  PubMed  Google Scholar 

  86. Salanova V, Markand O, Worth R. Temporal lobe epilepsy: analysis of failures and the role of reoperation. Acta Neurol Scand. 2005;111:126–33.

    Article  CAS  PubMed  Google Scholar 

  87. Siegel AM, Cascino GD, Meyer FB, McClelland RL, So EL, Marsh WR, Scheithauer BW, Sharbrough FW. Resective reoperation for failed epilepsy surgery: seizure outcome in 64 patients. Neurology. 2004;63:2298–302.

    CAS  PubMed  Google Scholar 

  88. Wyler AR, Hermann BP, Richey ET. Results of reoperation for failed epilepsy surgery. J Neurosurg. 1989;71:815–9.

    Article  CAS  PubMed  Google Scholar 

  89. Holmes MD, Born DE, Kutsy RL, Wilensky AJ, Ojemann GA, Ojemann LM. Outcome after surgery in patients with refractory temporal lobe epilepsy and normal MRI. Seizure. 2000;9:407–11.

    Article  CAS  PubMed  Google Scholar 

  90. McIntosh AM, Wilson SJ, Berkovic SF. Seizure outcome after temporal lobectomy: current research practice and findings. Epilepsia. 2001;42:1288–307.

    Article  CAS  PubMed  Google Scholar 

  91. Radhakrishnan K, So EL, Silbert PL, Jack CR Jr, Cascino GD, Sharbrough FW, O’Brien PC. Predictors of outcome of anterior temporal lobectomy for intractable epilepsy: a multivariate study. Neurology. 1998;51:465–71.

    Article  CAS  PubMed  Google Scholar 

  92. Grewal SS, Alvi MA, Perkins WJ, et al. Reassessing the impact of intraoperative electrocorticography on postoperative outcome of patients undergoing standard temporal lobectomy for MRI-negative temporal lobe epilepsy. J Neurosurg. 2019; https://doi.org/10.3171/2018.11.JNS182124.

  93. Cohen-Gadol AA, Bradley CC, Williamson A, Kim JH, Westerveld M, Duckrow RB, Spencer DD. Normal magnetic resonance imaging and medial temporal lobe epilepsy: the clinical syndrome of paradoxical temporal lobe epilepsy. J Neurosurg. 2005;102:902–9.

    Article  PubMed  Google Scholar 

  94. Ivanovic J, Larsson PG, Ostbury Y, et al. Seizure outcomes of temporal lobe epilepsy surgery in patients with normal MRI and without specific histopathology. Acta Neurochir. 2017; https://doi.org/10.1007/s00701-017-3127-y.

  95. Willmann O, Wennberg R, May T, et al. The contribution of 18 FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: a meta-analysis. Seizure. 2007;16:509–20.

    Article  CAS  PubMed  Google Scholar 

  96. LoPinto-Khoury C, Sperling MR, Skidmore C, et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia. 2012;53:342–8.

    Article  PubMed  Google Scholar 

  97. Yang P-F, Pei J-S, Zhang H-J, et al. Long-term epilepsy surgery outcomes in patients with PET-positive. MRI-negative temporal lobe epilepsy. Epilepsy Behav. 2014;41:91–7.

    Article  PubMed  Google Scholar 

  98. Capraz IY, Kurt G, Akdemir O, et al. Surgical outcome in patients with MRI-negative. PET-positive temporal lobe epilepsy. Seizure. 2015;29:63–8.

    Article  PubMed  Google Scholar 

  99. Foldvary N, Lee N, Hanson MW, et al. Correlation of hippocampal neuronal density and FDG-PET in mesial temporal lobe epilepsy. Epilepsia. 1999;40:26–9.

    Article  CAS  PubMed  Google Scholar 

  100. Tonini C, Beghi E, Berg AT, et al. Predictors of epilepsy surgery outcome: a meta-analysis. Epilepsy Res. 2004;62:75–87.

    Google Scholar 

  101. Wang X, Zhang C, Wang Y, et al. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: a meta-analysis and systematic review. Seizure. 2016;38:54–62.

    Article  CAS  PubMed  Google Scholar 

  102. Englot DJ, Breshears JD, Sun PP, Chang EF, Auguste KI. Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients. J Neurosurg Pediatr. 2013;12(2):126–33.

    Google Scholar 

  103. Barba C, Rheims S, Minotti L, et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain 2016;139(Pt 2):444–51.

    Google Scholar 

  104. Schmeiser B, Hammen T, Steinhoff BJ, et al. Long-term outcome characteristics in mesial temporal lobe epilepsy with and without associated cortical dysplasia. Epilepsy Res. 2016:147–56.

    Google Scholar 

  105. Trenerry MR, Jack CR Jr, Ivnik RJ, Sharbrough FW, Cascino GD, Hirschorn KA, Marsh WR, Meyer WR, Meyer FB. MRI hippocampal volumes and memory function before and after temporal lobectomy. Neurology. 1993;43:1800–5.

    Article  CAS  PubMed  Google Scholar 

  106. Rausch R, Kraemer S, Pietras CJ, Le M, Vickrey BG, Passaro EA. Early and late cognitive changes following temporal lobe surgery for epilepsy. Neurology. 2003;60:951–9.

    Article  CAS  PubMed  Google Scholar 

  107. Stroup E, Langfitt J, Berg M, McDermott M, Pilcher W, Como P. Predicting verbal memory decline following anterior temporal lobectomy. Neurology. 2003;60:1266–73.

    Article  CAS  PubMed  Google Scholar 

  108. Shaheryar FA, Tubbs RS, Tery CL, Cohen-Gadol AA. Surgery for extratemporal nonlesional epilepsy in adults: an outcome meta-analysis. Acta Neurochir. 2010;152:1299–305.

    Article  Google Scholar 

  109. Shaheryar FA, Maher CO, Tubbs RS, Terry CL, Cohen-Gadol AA. Surgery for extratemporal nonlesional epilepsy in children: a meta-analysis. Childs Nerv Syst. 2010;26:945–51.

    Article  Google Scholar 

  110. Ansari SF, Tubbs RS, Terry CL, et al. Surgery for extratemporal nonlesional epilepsy in adults: an outcome meta-analysis. Acta Neurochir. 2010;152:1299–305.

    Article  PubMed  Google Scholar 

  111. Arya R, Leach JL, Horn PS, et al. Clinical factors predict surgical outcomes in pediatric MRI-negative drug-resistant epilepsy. Seizure. 2016;41:56–61.

    Article  PubMed  Google Scholar 

  112. Wetjen NM, Marsh WR, Meyer FB, Cascino GD, So E, Britton JW, Stead SM, Worrell GA. Intracranial electroencephalography seizure onset patterns and surgical outcomes in nonlesional extratemporal epilepsy. J Neurosurg. 2009;110:1147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bauman JA, Feoli E, Romanelli P, Doyle WK, Devinsky O, Weiner HL. Multistage epilepsy surgery: safety, efficacy, and utility of a novel approach in pediatric extratemporal epilepsy. Neurosurgery. 2005;56:318–34.

    Article  PubMed  Google Scholar 

  114. Centeno RS, Yacubian EM, Sakamoto AC, Ferraz AF, Junior HC, Cavalheiro S. Presurgical evaluation and surgical treatment in children with extratemporal epilepsy. Childs Nerv Syst. 2006;22:945–59.

    Article  PubMed  Google Scholar 

  115. Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Lüders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130:574–84.

    Article  PubMed  Google Scholar 

  116. Siegel AM, Cascino GD, Meyer FB, Marsh WR, Scheithauer BW, Sharbrough FW. Surgical outcome and predictive factors in adult patients with intractable epilepsy and focal cortical dysplasia. Acta Neurol Scand. 2006;113:65–71.

    Article  CAS  PubMed  Google Scholar 

  117. Terra-Bustamante VC, Fernandes RM, Inuzuka LM, Velasco TR, Alexandre V Jr, Wichert-Ana L, Funayama S, Garzon E, Santos AC, Araujo D, Walz R, Assirati JA, Machado HR, Sakamoto AC. Surgically amenable epilepsies in children and adolescents: clinical, imaging, electrophysiological, and post-surgical outcome data. Childs Nerv Syst. 2005;21:546–51.

    Article  PubMed  Google Scholar 

  118. Elsharkawy AE, Pannek H, Schulz R, Hoppe M, Pahs G, Gyimesi C, et al. Outcome of extratemporal epilepsy surgery experience of a single center. Neurosurgery. 2008;63:516–25.

    Article  PubMed  Google Scholar 

  119. Kral T, Clusmann H, Blümcke I, Fimmers R, Ostertun B, Kurthen M, et al. Outcome of epilepsy surgery in focal cortical dysplasia. J Neurol Neurosurg Psychiatry. 2003;74:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kutsy RL. Focal extratemporal epilepsy: clinical features, EEG patterns, and surgical approach. J Neurol Sci. 1999;166:1–15.

    Google Scholar 

  121. See S-J, Jehi LE, Vadera S, et al. Surgical outcomes in patients with extratemporal epilepsy and subtle or normal magnetic resonance imaging findings. Neurosurgery. 2013;73:68–77.

    Article  PubMed  Google Scholar 

  122. Noe K, Sulc V, Wong-Kisiel L, et al. Long-term outcomes after nonlesional extratemporal lobe epilepsy surgery. JAMA Neurol. 2013;70:1003–8.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chiosa V, Granziera C, Spinelli L, et al. Successful surgical resection in non-lesional operculo-insular epilepsy without intracranial monitoring. Epileptic Disord. 2013;15:148–57.

    Article  PubMed  Google Scholar 

  124. Malak R, Bouthillier A, Carmant L, et al. Microsurgery of epileptic foci in the insular region: clinical article. J Neurosurg. 2009;110:1153–63.

    Article  PubMed  Google Scholar 

  125. Nguyen DK, Nguyen DB, Malak R, et al. Revisiting the role of the insula in refractory partial epilepsy. Epilepsia. 2009;50:510–20.

    Article  PubMed  Google Scholar 

  126. Shi J, Lacuey N, Lhatoo S. Surgical outcome of MRI-negative refractory extratemporal lobe epilepsy. Epilepsy Res. 2017;133:103–8. https://doi.org/10.1016/j.eplepsyres.2017.04.010.

    Article  PubMed  Google Scholar 

  127. Mosewich RK, So EL, O’Brien TJ, et al. Factors predictive of the outcome of frontal lobe epilepsy surgery. Epilepsia. 2000;41:843–9.

    Article  CAS  PubMed  Google Scholar 

  128. Kudr M, Krsek P, Marusic P, et al. SISCOM and FDG-PET in patients with non-lesional extratemporal epilepsy: correlation with intracranial EEG, histology, and seizure outcome. Epileptic Disord. 2013;15(1):3–13.

    Article  PubMed  Google Scholar 

  129. Park SA, Lim SR, Kim GS, et al. Ictal electrocorticographic findings related with surgical outcomes in nonlesional neocortical epilepsy. Epilepsy Res. 2002;48:199–206.

    Article  CAS  PubMed  Google Scholar 

  130. Cho EB, Joo EY, Seo D-W, Hong S-C, Hong SB. Prognostic role of functional neuroimaging after multilobar resection in patients with localization related epilepsy. PLoS One. 2015;10:e0136565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Nilsson DT, Malmgren K, Flink R, Rydenhag B. Outcomes of multilobar resections for epilepsy in Sweden 1990-2013: a national population-based study. Acta Neurochir (Wien). 2016;158:1151–7.

    Article  Google Scholar 

  132. Sarkis RA, Jehi L, Najm IM, Kotagal P, Bingaman WE. Seizure outcomes following multilobar epilepsy surgery. Epilepsia. 2012;53:44–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zentner, J. (2020). MRI-Negative Epilepsies. In: Surgical Treatment of Epilepsies. Springer, Cham. https://doi.org/10.1007/978-3-030-48748-5_10

Download citation

Publish with us

Policies and ethics