Skip to main content

The Dilemma for Using Hydroxyethyl Starch Solutions for Perioperative Fluid Management

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

Hydroxyethyl starch is a colloid plasma expander that has recently been restricted by the European Medicines Agency (EMA) following safety concerns in critically ill patients or in patients with sepsis (2013). The EMA restricted HES use in these patients but continues to allow its use in surgical and trauma patients who suffer from hypovolemia due to blood loss that cannot be corrected by crystalloids alone. Following drug utilisation studies which showed that HES continued to be used in patients with contraindications, EMA conducted a new revision and introduced new risk minimization measures in 2018 to reinforce existing restrictions. This narrative review explains the basis for initial approval of HES, the presumed action of HES as plasma expander, and the mechanisms of its adverse effects on coagulation and on extravascular tissue uptake, especially in the kidneys with resulting renal failure, and presents an overview of recent important studies with a focus on surgery and trauma. No definitive, large-scale randomized controlled trials with patient-relevant outcomes and long-term follow-up exist in this population. Existing studies provide no assurance of a lower risk of coagulopathy, mortality, or kidney failure than in other critically ill patients. There are sufficient data to suggest that HES has similar risks also in these patients and should therefore be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous. Commission implementing decision. Brussels, 19.12.2013 c(2013)9793 (final). http://ec.europa.eu/health/documents/community-register/2013/20131219127286/dec_127286_en.pdf.

  2. Anonymous. Assessment report for solutions for infusion containing hydroxyethyl starch. Procedure under article 107i of directive 2001/83/EC. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Hydroxyethyl_starch-containing_medicines_107/Recommendation_provided_by_Pharmacovigilance_Risk_Assessment_Committee/WC500154254.pdf.

  3. Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, et al. Resuscitation fluid use in critically ill adults: an international cross sectional study in 391 intensive care units. Crit Care. 2010;14(5):R185.

    PubMed  PubMed Central  Google Scholar 

  4. Avorn J. Learning about the safety of drugs – a half-century of evolution. N Engl J Med. 2011;365(23):2151–3.

    CAS  PubMed  Google Scholar 

  5. Maio G. On the history of the contergan (thalidomide) catastrophe in the light of drug legislation. Dtsch Med Wochenschr. 2001;126(42):1183–6.

    CAS  PubMed  Google Scholar 

  6. Anonymous. Food and drug administration. Detailed Report on VOLUVEN, HEXTEND and HESPAN, made available by request on 29th August 2013.

    Google Scholar 

  7. Anonymous. US Department of Health and Human Services, Public Health Service, Food and Drug Administration (FDA). NDA review memo (mid-cycle). http://www.Fda.Gov/downloads/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/newdrugapplicationsndas/ucm083393.Pdf.

  8. Westphal M, James MF, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches: different products – different effects. Anesthesiology. 2009;111:187–202.

    CAS  PubMed  Google Scholar 

  9. Hartog CS, Brunkhorst FM, Engel C, Meier-Hellmann A, Ragaller M, Welte T, et al. Are renal adverse effects of hydroxyethyl starches merely a consequence of their incorrect use? Wien KlinWochenschr. 2011;123(5–6):145–55.

    CAS  Google Scholar 

  10. Hartog CS, Kohl M, Reinhart K. A systematic review of third-generation hydroxyethyl starch (HES 130/0.4) in resuscitation: safety not adequately addressed. Anesth Analg. 2011;112(3):635–45.

    CAS  PubMed  Google Scholar 

  11. Autrat-Leca E, Jonville-Béra A, Paintaud G. Commission de pharmacovigilance de l’affsaps: Décisions: La durée maximale de traitement par elohes. ActualitésenPharmacologie Clinique 47. 1999 (Avril-Juillet).

    Google Scholar 

  12. Jonville-Bera AP, Autret-Leca E, Gruel Y. Acquired type I von Willebrand’s disease associated with highly substituted hydroxyethyl starch. N Engl J Med. 2001;345(8):622–3.

    CAS  PubMed  Google Scholar 

  13. Kozek-Langenecker SA, Jungheinrich C, Sauermann W, Van der Linden P. The effects of hydroxyethyl starch 130/0.4 (6%) on blood loss and use of blood products in major surgery: a pooled analysis of randomized clinical trials. Anesth Analg. 2008;107(2):382–90.

    CAS  PubMed  Google Scholar 

  14. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Google Scholar 

  15. Jungheinrich C, Neff TA. Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet. 2005;44(7):681–99.

    CAS  PubMed  Google Scholar 

  16. Wagenblast M. Molmassenverteilung der in milz und leber gespeicherten hydroxyethylstärke (hes) bei ratten nach intravenöser applikation : Polymeranalytische untersuchungen mittels kopplung der ausschluss-chromatographie und mehrwinkel-laser-streulicht-detektion [molar mass distribution of accumulated hydroxyethyl starch (hes) in spleen and liver after intravenous application: Polymer analytic studies using size exclusion chromatography coupled with multi angle laser light scattering]. Dissertation. 2004. http://publikationen.ub.uni-frankfurt.de/opus4/frontdoor/index/index/docId/3457. Accessed 15 Oct 2015.

  17. Baron JF. A new hydroxyethyl starch: HES 130/0.4, voluven. TATM. 2000;2(2):13–21. [Review]

    Google Scholar 

  18. Thompson WL, Fukushima T, Rutherford RB, Walton RP. Intravascular persistence, tissue storage, and excretion of hydroxyethyl starch. Surg Gynecol Obstet. 1970;131(5):965–72.

    CAS  PubMed  Google Scholar 

  19. Jesch F, Hubner G, Zumtobel V, Zimmermann M, Messmer K. Hydroxyethyl starch (HAS 450/0.7) in human plasma and liver. Course of concentration and histological changes. Infusionsther Klin Ernahr. 1979;6(2):112–7.

    CAS  PubMed  Google Scholar 

  20. Waitzinger J, Bepperling F, Pabst G, Opitz J. Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R&D. 2003;4(3):149–57.

    CAS  Google Scholar 

  21. Lenz K, Schimetta W, Polz W, Kroll W, Gruy-Kapral C, Magometschnigg D. Intestinal elimination of hydroxyethyl starch? Intensive Care Med. 2000;26(6):733–9.

    CAS  PubMed  Google Scholar 

  22. Klotz U, Kroemer H. Clinical pharmacokinetic considerations in the use of plasma expanders. Clin Pharmacokinet. 1987;12(2):123–35.

    CAS  PubMed  Google Scholar 

  23. Mishler JM. Synthetic plasma volume expanders – their pharmacology, safety and clinical efficacy. Clin Haematol. 1984;13(1):75–92.

    CAS  PubMed  Google Scholar 

  24. Bellmann R, Feistritzer C, Wiedermann CJ. Effect of molecular weight and substitution on tissue uptake of hydroxyethyl starch: a meta-analysis of clinical studies. Clin Pharmacokinet. 2012;51(4):225–36.

    CAS  PubMed  Google Scholar 

  25. Neuhaus W, Schick MA, Bruno RR, Schneiker B, Forster CY, Roewer N, et al. The effects of colloid solutions on renal proximal tubular cells in vitro. Anesth Analg. 2012;114(2):371–4.

    CAS  PubMed  Google Scholar 

  26. Ginz HF, Gottschall V, Schwarzkopf G, Walter K. excessive tissue storage of colloids in the reticuloendothelial system. Anaesthesist. 1998;47(4):330–4.

    CAS  PubMed  Google Scholar 

  27. Szepfalusi Z, Parth E, Jurecka W, Luger TA, Kraft D. Human monocytes and keratinocytes in culture ingest hydroxyethylstarch. Arch Dermatol Res. 1993;285(3):144–50.

    CAS  PubMed  Google Scholar 

  28. Heilmann L, Lorch E, Hojnacki B, Muntefering H, Forster H. Accumulation of two different hydroxyethyl starch preparations in the placenta after hemodilution in patients with fetal intrauterine growth retardation or pregnancy hypertension. Infusionstherapie. 1991;18(5):236–43.

    CAS  PubMed  Google Scholar 

  29. Bork K. Pruritus precipitated by hydroxyethyl starch: a review. Br J Dermatol. 2005;152(1):3–12.

    CAS  PubMed  Google Scholar 

  30. Stander S, Richter L, Osada N, Metze D. Hydroxyethyl starch-induced pruritus: clinical characteristics and influence of dose, molecular weight and substitution. Acta Derm Venereol. 2014;94(3):282–7.

    PubMed  Google Scholar 

  31. Stander S, Szepfalusi Z, Bohle B, Stander H, Kraft D, Luger TA, et al. Differential storage of hydroxyethyl starch (HES) in the skin: an immunoelectron-microscopical long-term study. Cell Tissue Res. 2001;304(2):261–9.

    CAS  PubMed  Google Scholar 

  32. Sirtl C, Laubenthal H, Zumtobel V, Kraft D, Jurecka W. Tissue deposits of hydroxyethyl starch (HES): dose-dependent and time-related. Br J Anaesth. 1999;82(4):510–5.

    CAS  PubMed  Google Scholar 

  33. Dickenmann M, Oettl T, Mihatsch MJ. Osmotic nephrosis: acute kidney injury with accumulation of proximal tubular lysosomes due to administration of exogenous solutes. Am J Kidney Dis. 2008;51(3):491–503.

    PubMed  Google Scholar 

  34. Pillebout E, Nochy D, Hill G, Conti F, Antoine C, Calmus Y, et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). Am J Transplant. 2005;5(5):1120–9.

    PubMed  Google Scholar 

  35. Levick JR, Michel CC. Microvascular fluid exchange and the revised starling principle. Cardiovasc Res. 2010;87(2):198–210.

    CAS  PubMed  Google Scholar 

  36. Woodcock TE, Woodcock TM. Revised starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.

    CAS  PubMed  Google Scholar 

  37. Woodcock TE. No more colloid trials! Br J Anaesth. 2014;112(4):761.

    CAS  PubMed  Google Scholar 

  38. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.

    Google Scholar 

  39. Wills BA, Nguyen MD, Ha TL, Dong TH, Tran TN, Le TT, et al. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med. 2005;353(9):877–89.

    PubMed  Google Scholar 

  40. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

    CAS  PubMed  Google Scholar 

  41. James MF, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS. Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the first trial (fluids in resuscitation of severe trauma). Br J Anaesth. 2011;107(5):693–702.

    CAS  PubMed  Google Scholar 

  42. James MFM, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS. Reply from the authors. Br J Anaesth. 2012;108(2):322–4.

    Google Scholar 

  43. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    CAS  PubMed  Google Scholar 

  44. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    CAS  PubMed  Google Scholar 

  45. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 versus 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16(3):R94.

    PubMed  PubMed Central  Google Scholar 

  46. Orbegozo Cortes D, Gamarano Barros T, Njimi H, Vincent JL. Crystalloids versus colloids: exploring differences in fluid requirements by systematic review and meta-regression. Anesth Analg. 2015;120(2):389–402.

    CAS  PubMed  Google Scholar 

  47. Bayer O, Schwarzkopf D, Doenst T, Cook D, Kabisch B, Schelenz C, et al. Perioperative fluid therapy with tetrastarch and gelatin in cardiac surgery-a prospective sequential analysis*. Crit Care Med. 2013;41(11):2532–42.

    CAS  PubMed  Google Scholar 

  48. Meybohm P, Van Aken H, De Gasperi A, De Hert S, Della Rocca G, Girbes AR, et al. Re-evaluating currently available data and suggestions for planning randomised controlled studies regarding the use of hydroxyethyl-starch in critically ill patients – a multidisciplinary statement. Crit Care. 2013;17(4):R166.

    PubMed  PubMed Central  Google Scholar 

  49. Gillies MA, Habicher M, Jhanji S, Sander M, Mythen M, Hamilton M, et al. Incidence of postoperative death and acute kidney injury associated with I.V. 6% hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth. 2013;112(1):25–34.

    PubMed  Google Scholar 

  50. Klemm E, Bepperling F, Burschka MA, Mosges R. Hemodilution therapy with hydroxyethyl starch solution (130/0.4) in unilateral idiopathic sudden sensorineural hearing loss: a dose-finding, double-blind, placebo-controlled, international multicenter trial with 210 patients. Otol Neurotol. 2007;28(2):157–70.

    PubMed  Google Scholar 

  51. Ganzevoort W, Rep A, Bonsel GJ, Fetter WP, van Sonderen L, De Vries JI, et al. A randomised controlled trial comparing two temporising management strategies, one with and one without plasma volume expansion, for severe and early onset pre-eclampsia. BJOG. 2005;112(10):1358–68.

    PubMed  Google Scholar 

  52. Haentjens LL, Ghoundiwal D, Touhiri K, Renard M, Engelman E, Anaf V, et al. Does infusion of colloid influence the occurrence of postoperative nausea and vomiting after elective surgery in women? Anesth Analg. 2009;108(6):1788–93.

    PubMed  Google Scholar 

  53. Dieterich M, Reimer T, Kundt G, Stubert J, Gerber B. The role of hydroxyethyl starch in preventing surgical-site infections and nipple necrosis in patients undergoing reduction mammaplasty: a prospective case–control study of 334 patients. Aesthetic Plast Surg. 2013;37(3):554–60.

    PubMed  Google Scholar 

  54. Futier E, Garot M, Godet T, Biais M, Verzilli D, Ouattara A, et al. Effect of hydroxyethyl starch vs saline for volume replacement therapy on death or postoperative complications among high-risk patients undergoing major abdominal surgery. JAMA. 2020;323(3):225.

    Google Scholar 

  55. de Jonge E, Levi M, Buller HR, Berends F, Kesecioglu J. Decreased circulating levels of von Willebrand factor after intravenous administration of a rapidly degradable hydroxyethyl starch (HES 200/0.5/6) in healthy human subjects. Intensive Care Med. 2001;27(11):1825–9.

    PubMed  Google Scholar 

  56. Levi M, Jonge E. Clinical relevance of the effects of plasma expanders on coagulation. Semin Thromb Hemost. 2007;33(8):810–5.

    CAS  PubMed  Google Scholar 

  57. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309(7):678–88. [Meta-Analysis Review]

    CAS  PubMed  Google Scholar 

  58. Skhirtladze K, Base EM, Lassnigg A, Kaider A, Linke S, Dworschak M, et al. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.4 6%, and ringer’s lactate on blood loss and coagulation after cardiac surgery. Br J Anaesth. 2014;112(2):255–64.

    CAS  PubMed  Google Scholar 

  59. Feldheiser A, Pavlova V, Bonomo T, Jones A, Fotopoulou C, Sehouli J, et al. Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm. Br J Anaesth. 2013;110(2):231–40.

    CAS  PubMed  Google Scholar 

  60. Alexander B, Odake K, Lawlor D, Swanger M. Coagulation, hemostasis, and plasma expanders: a quarter century enigma. Fed Proc. 1975;34(6):1429–40.

    CAS  PubMed  Google Scholar 

  61. Hartog CS, Reuter D, Loesche W, Hofmann M, Reinhart K. Influence of hydroxyethyl starch (HES) 130/0.4 on hemostasis as measured by viscoelastic device analysis: a systematic review. Intensive Care Med. 2011;37(11):1725–37. [Research Support, Non-U.S. Gov’t Review]

    CAS  PubMed  Google Scholar 

  62. Haynes GR, Havidich JE, Payne KJ. Why the food and drug administration changed the warning label for hetastarch. Anesthesiology. 2004;101(2):560–1.

    PubMed  Google Scholar 

  63. Haase N, Wetterslev J, Winkel P, Perner A. Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial. Intensive Care Med. 2013;39(12):2126–34.

    CAS  PubMed  Google Scholar 

  64. Yates DR, Davies SJ, Milner HE, Wilson RJ. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014;112(2):281–9.

    CAS  PubMed  Google Scholar 

  65. Rasmussen KC, Johansson PI, Hojskov M, Kridina I, Kistorp T, Thind P, et al. Hydroxyethyl starch reduces coagulation competence and increases blood loss during major surgery: results from a randomized controlled trial. Ann Surg. 2014;259(2):249–54.

    PubMed  Google Scholar 

  66. Schramko A, Suojaranta-Ylinen R, Niemi T, Pesonen E, Kuitunen A, Raivio P, et al. The use of balanced HES 130/0.42 during complex cardiac surgery; effect on blood coagulation and fluid balance: a randomized controlled trial. Perfusion. 2015;30(3):224–32.

    CAS  PubMed  Google Scholar 

  67. Schramko A, Suojaranta-Ylinen R, Kuitunen A, Raivio P, Kukkonen S, Niemi T. Hydroxyethylstarch and gelatin solutions impair blood coagulation after cardiac surgery: a prospective randomized trial. Br J Anaesth. 2010;104(6):691–7. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t]

    CAS  PubMed  Google Scholar 

  68. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, et al. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg. 2007;105(4):905–17.

    CAS  PubMed  Google Scholar 

  69. Topcu I, Civi M, Ozturk T, Keles GT, Coban S, Yentur EA, et al. Evaluation of hemostatic changes using thromboelastography after crystalloid or colloid fluid administration during major orthopedic surgery. Braz J Med Biol Res. 2012;45(9):869–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamaji A, Hajjar L, Caiero M, Almeida J, Nakamura RE, Osawa EA, et al. Volume replacement therapy during hip arthroplasty using hydroxyethyl starch (130/0.4) compared to lactated ringer decreases allogeneic blood transfusion and postoperative infection. Rev Bras Anestesiol. 2013;63(1):27–35.

    Google Scholar 

  71. Navickis RJ, Haynes GR, Wilkes MM. Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: a meta-analysis of randomized trials. J Thorac Cardiovasc Surg. 2012;144(1):223–30. [Research Support, Non-U.S. Gov’t]

    CAS  PubMed  Google Scholar 

  72. Schortgen F, Brochard L. Colloid-induced kidney injury: experimental evidence may help to understand mechanisms. Crit Care. 2009;13(2):130.

    PubMed  PubMed Central  Google Scholar 

  73. Huter L, Simon TP, Weinmann L, Schuerholz T, Reinhart K, Wolf G, et al. Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care. 2009;13(1):R23.

    PubMed  PubMed Central  Google Scholar 

  74. Bruno RR, Neuhaus W, Roewer N, Wunder C, Schick MA. Molecular size and origin do not influence the harmful side effects of hydroxyethyl starch on human proximal tubule cells (HK-2) in vitro. Anesth Analg. 2014;119(3):570–7.

    CAS  PubMed  Google Scholar 

  75. Schick MA, Isbary TJ, Schlegel N, Brugger J, Waschke J, Muellenbach R, et al. The impact of crystalloid and colloid infusion on the kidney in rodent sepsis. Intensive Care Med. 2010;36(3):541–8.

    PubMed  Google Scholar 

  76. Legendre C, Thervet E, Page B, Percheron A, Noel LH, Kreis H. Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet. 1993;342(8865):248–9.

    CAS  PubMed  Google Scholar 

  77. Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet. 1996;348(9042):1620–2.

    CAS  PubMed  Google Scholar 

  78. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentrerandomised study. Lancet. 2001;357(9260):911–6.

    CAS  PubMed  Google Scholar 

  79. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7:CD007594.

    Google Scholar 

  80. Rioux JP, Lessard M, De Bortoli B, Roy P, Albert M, Verdant C, et al. Pentastarch 10% (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med. 2009;37(4):1293–8.

    CAS  PubMed  Google Scholar 

  81. Kashy BK, Podolyak A, Makarova N, Dalton JE, Sessler DI, Kurz A. Effect of hydroxyethyl starch on postoperative kidney function in patients having noncardiac surgery. Anesthesiology. 2014;121(4):730–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Opperer M, Poeran J, Rasul R, Mazumdar M, Memtsoudis SG. Use of perioperative hydroxyethyl starch 6% and albumin 5% in elective joint arthroplasty and association with adverse outcomes: a retrospective population based analysis. BMJ. 2015;350:h1567.

    PubMed  PubMed Central  Google Scholar 

  83. Wilkes MM, Navickis RJ. Postoperative renal replacement therapy after hydroxyethyl starch infusion: a meta-analysis of randomised trials. Neth J Crit Care. 2014;18(4):4–9.

    Google Scholar 

  84. Jacob M, Fellahi JL, Chappell D, Kurz A. The impact of hydroxyethyl starches in cardiac surgery: a meta-analysis. Crit Care. 2014;18(6):656.

    PubMed  PubMed Central  Google Scholar 

  85. Navickis RJ, Haynes GR, Wilkes MM. Tetrastarch in cardiac surgery: error, confounding and bias in a meta-analysis of randomized trials. Crit Care. 2015;22:19.

    Google Scholar 

  86. Wiedermann CJ. The use of meta-analyses for benefit/risk re-evaluations of hydroxyethyl starch. Crit Care. 2015;19:240.

    PubMed  PubMed Central  Google Scholar 

  87. Van Der Linden P, James M, Mythen M, Weiskopf RB. Review article: safety of modern starches used during surgery. Anesth Analg. 2013;116(1):35–48.

    Google Scholar 

  88. Takala J, Hartog C, Reinhart K. Safety of modern starches used during surgery: misleading conclusions. Anesth Analg. 2013;117(2):527–8.

    PubMed  Google Scholar 

  89. Christidis C, Mal F, Ramos J, Senejoux A, Callard P, Navarro R, et al. Worsening of hepatic dysfunction as a consequence of repeated hydroxyethylstarch infusions. J Hepatol. 2001;35(6):726–32.

    CAS  PubMed  Google Scholar 

  90. Wittbrodt P, Haase N, Butowska D, Winding R, Poulsen JB, Perner A. Quality of life and pruritus in patients with severe sepsis resuscitated with hydroxyethyl starch long-term follow-up of a randomised trial. Crit Care. 2013;17(2):R58.

    PubMed  PubMed Central  Google Scholar 

  91. Auwerda JJ, Wilson JH, Sonneveld P. Foamy macrophage syndrome due to hydroxyethyl starch replacement: a severe side effect in plasmapheresis. Ann Intern Med. 2002;137(12):1013–4.

    PubMed  Google Scholar 

  92. Schmidt-Hieber M, Loddenkemper C, Schwartz S, Arntz G, Thiel E, Notter M. Hydrops lysosomalisgeneralisatus – an underestimated side effect of hydroxyethyl starch therapy? Eur J Haematol. 2006;77(1):83–5.

    PubMed  Google Scholar 

  93. Li L, Li Y, Xu X, Xu B, Ren R, Liu Y, et al. Safety evaluation on low-molecular-weight hydroxyethyl starch for volume expansion therapy in pediatric patients: a meta-analysis of randomized controlled trials. Crit Care. 2015;19:79.

    PubMed  PubMed Central  Google Scholar 

  94. Lissauer ME, Chi A, Kramer ME, Scalea TM, Johnson SB. Association of 6% hetastarch resuscitation with adverse outcomes in critically ill trauma patients. Am J Surg. 2011;202(1):53–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane S. Hartog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartog, C.S., Reinhart, K. (2020). The Dilemma for Using Hydroxyethyl Starch Solutions for Perioperative Fluid Management. In: Farag, E., Kurz, A., Troianos, C. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-030-48374-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48374-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48373-9

  • Online ISBN: 978-3-030-48374-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics