Skip to main content

Engineering Perspectives for Mechanical Circulatory Support Devices

  • Chapter
  • First Online:
Mechanical Support for Heart Failure

Abstract

The design and development of mechanical circulatory support (MCS) devices involves interaction with the native circulation and engineering fundamentals such as converting electrical energy to hydraulic energy and stabilization by negative feedback. Pump type determines output characteristics, and among continuous flow pumps, the relationships between pressure head and motor power and flow rate offer clinical insight, such as sensorless flow estimation and ventricular suction detection. Pump and equipment design considerations affect efficiency and hemocompatibility; development practices enable transferring such medical devices to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz AM. Heart failure pathophysiology, molecular biology, and clinical management. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 41–4.

    Google Scholar 

  2. Schampaert S, Rutten MC, et al. Modeling the interaction between the intra-aortic balloon pump and the cardiovascular system: the effect of timing. ASAIO J. 2013;59(1):30–6. https://doi.org/10.1097/MAT.0b013e3182768ba9.

    Article  PubMed  Google Scholar 

  3. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. https://doi.org/10.1056/NEJMoa0909938.

    Article  CAS  PubMed  Google Scholar 

  4. Griffith BP, Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20; discussion S114–6.

    Article  CAS  Google Scholar 

  5. Selzman CH, Koliopoulou A, Glotzbach JP, McKellar SH. Evolutionary improvements in the Jarvik 2000 left ventricular assist device. ASAIO J. 2018;64(6):827–30. https://doi.org/10.1097/MAT.0000000000000743.

    Article  PubMed  Google Scholar 

  6. Chung MK, Zhang N, Tansley GD, Woodard JC. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump. Artif Organs. 2004;28(3):287–97.

    Article  Google Scholar 

  7. Larose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 2010;56(4):285–9. https://doi.org/10.1097/MAT.0b013e3181dfbab5.

    Article  PubMed  Google Scholar 

  8. Morshuis M, Schoenbrodt M, Nojiri C, Roefe D, Schulte-Eistrup S, Boergermann J, et al. DuraHeart magnetically levitated centrifugal left ventricular assist system for advanced heart failure patients. Expert Rev Med Devices. 2010;7(2):173–83. https://doi.org/10.1586/erd.09.68.

    Article  PubMed  Google Scholar 

  9. Bourque K, Cotter C, Dague C, Harjes D, Dur O, Duhamel J, et al. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibilitY. ASAIO J. 2016;62(4):375–83. https://doi.org/10.1097/MAT.0000000000000388.

    Article  CAS  PubMed  Google Scholar 

  10. Mironer A. Engineering fluid mechanics. New York: McGraw-Hill; 1979. p. 213.

    Google Scholar 

  11. Guyton AC, Hall JE. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006. p. 232–3.

    Google Scholar 

  12. Arnold WS, Bourque K. The engineer and the clinician: understanding the work output and troubleshooting of the HeartMate II rotary flow pump. J Thorac Cardiovasc Surg. 2013;145(1):32–6. https://doi.org/10.1016/j.jtcvs.2012.07.113.

    Article  PubMed  Google Scholar 

  13. Maltais S, Kilic A, Nathan S, Keebler M, Emani S, Ransom J, et al. PREVENtion of HeartMate II pump thrombosis through clinical management: the PREVENT multi-center study. J Heart Lung Transplant. 2017;36(1):1–12. https://doi.org/10.1016/j.healun.2016.10.001.

    Article  PubMed  Google Scholar 

  14. Stepanoff AJ. Centrifugal and axial flow pumps. 2nd ed. Florida: Krieger; 1957.

    Google Scholar 

  15. Uriel N, Colombo PC, Cleveland JC, Long JW, Salerno C, Goldstein DJ, et al. Hemocompatibility-related outcomes in the MOMENTUM 3 trial at 6 months: a randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation. 2017;135(21):2003–12. https://doi.org/10.1161/CIRCULATIONAHA.117.028303.

    Article  PubMed  Google Scholar 

  16. Quality System (QS) Regulation/Medical Device Good Manufacturing Practices, 21 C.F.R. Part 820 (1978).

    Google Scholar 

  17. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC (2017).

    Google Scholar 

  18. American National Standards Institute. Human factors engineering – Design of medical devices. Virginia: ANSI/AAMI/HE75:2009 (r2013).

    Google Scholar 

  19. International Organization for Standardization. Medical Devices – Application of usability engineering to medical devices. Switzerland: ISO/IEC 62366:2007.

    Google Scholar 

  20. U.S. Food and Drug Administration. Guidance for Industry: Applying human factors and usability engineering to optimize medical device design. Maryland: The Administration; 2016.

    Google Scholar 

  21. American National Standards Institute. Medical Devices – Application of risk management to medical devices. Virginia: ANSI/AAMI/ISO 14971:2007 (r2010).

    Google Scholar 

  22. Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376(5):451–60. https://doi.org/10.1056/NEJMoa1602954.

    Article  PubMed  Google Scholar 

  23. Mehra MR, Goldstein DJ, Uriel N, Cleveland JC Jr, Yuzefpolskaya M, Salerno C, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378(15):1386–95. https://doi.org/10.1056/NEJMoa1800866.

    Article  PubMed  Google Scholar 

  24. Zimpfer D, Strueber M, Aigner P, Schmitto JD, Fiane AE, Larbalestier R, et al. Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. Eur J Cardiothorac Surg. 2016;50(5):839–48.

    Article  Google Scholar 

  25. Bourque K, Dague C, Farrar D, Harms K, Tamez D, Cohn W, Tuzun E, Poirier V, Frazier OH. In vivo assessment of a rotary left ventricular assist device-induced artificial pulse in the proximal and distal aorta. Artif Organs. 2006;30(8):638–42.

    Article  Google Scholar 

  26. Desai AS, Bhimaraj A, Bharmi R, Jermyn R, Bhatt K, Shavelle D, et al. Ambulatory hemodynamic monitoring reduces heart failure hospitalizations in “Real-World” clinical practice. J Am Coll Cardiol. 2017;69(19):2357–65. https://doi.org/10.1016/j.jacc.2017.03.009.

    Article  PubMed  Google Scholar 

  27. Schmitto JD, Hanke JS, Rojas SV, Avsar M, Haverich A, et al. First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate III). J Heart Lung Transplant. 2015;34(6):858–60.

    Article  Google Scholar 

Download references

Disclosures

The authors are employees of Abbott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Bourque MSME .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bourque, K., Cotter, C., Dague, C. (2020). Engineering Perspectives for Mechanical Circulatory Support Devices. In: Karimov, J., Fukamachi, K., Starling, R. (eds) Mechanical Support for Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-030-47809-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47809-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47808-7

  • Online ISBN: 978-3-030-47809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics