Skip to main content

Immune Mechanisms in Vascular Remodeling in Hypertension

  • Chapter
  • First Online:
Microcirculation in Cardiovascular Diseases

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 325 Accesses

Abstract

Small resistance arteries undergo either inward eutrophic or hypertrophic remodeling, which contributes to raise blood pressure and impairs tissue perfusion. Vasoconstriction, growth, oxidative stress, and inflammation are mechanisms in the vascular wall that participate in vascular remodeling. Inflammatory and immune cells infiltrating the adventitia and perivascular fat produce cytokines that contribute to vascular injury. Molecular studies may identify diagnostic and therapeutic targets in the future that will improve our ability to prevent and treat vascular injury associated with hypertension and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schiffrin EL. The vascular phenotypes in hypertension: relation to the natural history of hypertension. J Am Soc Hypertens. 2007;1:56–67.

    Article  PubMed  Google Scholar 

  2. Mitchell GF, Lacourcière Y, Ouellet JP, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension—the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  3. Schiffrin EL. Vascular stiffening and arterial compliance—implications for systolic blood pressure. Am J Hypertens. 2004;17:39S–48S.

    Article  CAS  PubMed  Google Scholar 

  4. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. Small artery structure in hypertension: dual processes of remodeling and growth. Hypertension. 1993;21:391–7.

    Article  CAS  PubMed  Google Scholar 

  5. Schiffrin EL, Deng LY, Larochelle P. Morphology of resistance arteries and comparison of effects of vasoconstrictors in mild essential hypertensive patients. Clin Invest Med. 1993;16:177–86.

    CAS  PubMed  Google Scholar 

  6. Mulvany MJ, Baumbach GL, Aalkjaer C, et al. Vascular remodeling. Hypertension. 1996;28:505–6.

    CAS  PubMed  Google Scholar 

  7. Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.

    Article  CAS  PubMed  Google Scholar 

  8. Rizzoni D, Porteri E, Castellano M, et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension. 1996;28:785–90.

    Article  CAS  PubMed  Google Scholar 

  9. Rizzoni D, Porteri E, Guelfi D, et al. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103:1238–44.

    Article  CAS  PubMed  Google Scholar 

  10. Endemann D, Pu Q, De Ciuceis C, et al. Persistent remodeling of resistance arteries in type 2 diabetic patients on antihypertensive treatment. Hypertension. 2004;43:399–404.

    Article  CAS  PubMed  Google Scholar 

  11. Rizzoni D, Porteri E, Giustina A, et al. Acromegalic patients show the presence of hypertrophic remodeling of subcutaneous small resistance arteries. Hypertension. 2004;43:561–5.

    Article  CAS  PubMed  Google Scholar 

  12. Li JS, Larivière R, Schiffrin EL. Effect of a nonselective endothelin antagonist on vascular remodeling in deoxycorticosterone acetate-salt hypertensive rats: evidence for a role of endothelin in vascular hypertrophy. Hypertension. 1994;24:183–8.

    Article  CAS  PubMed  Google Scholar 

  13. Schiffrin EL, Larivière R, Li JS, Sventek P. Enhanced expression of the endothelin-1 gene in blood vessels of DOCA-salt hypertensive rats: correlation with vascular structure. J Vasc Res. 1996;33:235–48.

    Article  CAS  PubMed  Google Scholar 

  14. D'Uscio LV, Barton M, Shaw S, Moreau P, Lüscher TF. Structure and function of small arteries in salt-induced hypertension—effects of chronic endothelin-subtype-A-receptor blockade. Hypertension. 1997;30:905–11.

    Article  CAS  PubMed  Google Scholar 

  15. Schiffrin EL, Touyz RM. From bedside to bench to bedside: role of renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol. 2004;287:H435–46.

    Article  CAS  PubMed  Google Scholar 

  16. Schiffrin EL, Larivière R, Li JS, Sventek P, Touyz RM. Deoxycorticosterone acetate plus salt induces overexpression of vascular endothelin-1 and severe vascular hypertrophy in spontaneously hypertensive rats. Hypertension. 1995;25(Part 2):769–73.

    Article  CAS  PubMed  Google Scholar 

  17. Schiffrin EL, Deng LY, Sventek P, Day R. Enhanced expression of endothelin-1 gene in resistance arteries in severe human essential hypertension. J Hypertens. 1997;15:57–63.

    Article  CAS  PubMed  Google Scholar 

  18. Amiri F, Virdis A, Neves MF, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation. 2004;110:2233–40.

    Article  CAS  PubMed  Google Scholar 

  19. Coelho SC, Berillo O, Ouerd S, et al. Three-month endothelial human endothelin-1 overexpression causes blood pressure elevation and vascular and kidney injury. Hypertension. 2018;71:208–16.

    Article  CAS  PubMed  Google Scholar 

  20. Lee RMKW, Garfield RE, Forrest JB, Daniel EE. Morphometric study of structural changes in the mesenteric blood vessels of spontaneously hypertensive rats. Blood Vessels. 1983;20:57–71.

    CAS  PubMed  Google Scholar 

  21. Mulvany MJ, Baandrup U, Gundersen HJ. Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a three-dimensional disector. Circ Res. 1985;57:794–800.

    Article  CAS  PubMed  Google Scholar 

  22. Intengan HD, Deng LY, Li JS, Schiffrin EL. Mechanics and composition of human subcutaneous resistance arteries in essential hypertension. Hypertension. 1999;33:569–74.

    Article  CAS  PubMed  Google Scholar 

  23. Bakker ENTP, Van der Meulen ET, Van den Berg BM, et al. Inward remodeling follows chronic vasoconstriction in isolated resistance arteries. J Vasc Res. 2002;39:12–20.

    Article  CAS  PubMed  Google Scholar 

  24. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats—effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation. 1999;100:2267–75.

    Article  CAS  PubMed  Google Scholar 

  25. Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL. Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension. 2003;42:49–55.

    Article  CAS  PubMed  Google Scholar 

  26. Neves MF, Virdis A, Schiffrin EL. Resistance artery mechanics and composition in angiotensin II-infused rats: effects of aldosterone antagonism. J Hypertens. 2003;21:189–98.

    Article  CAS  PubMed  Google Scholar 

  27. Bakker ENTP, Buus CL, Spaan JAE, et al. Small artery remodeling depends on tissue-type transglutaminase. Circ Res. 2005;96:119–26.

    Article  CAS  PubMed  Google Scholar 

  28. Brassard P, Amiri F, Thibault G, Schiffrin EL. Role of angiotensin type-1 and angiotensin type-2 receptors in the expression of vascular integrins in angiotensin II-infused rats. Hypertension. 2006;47:122–7.

    Article  CAS  PubMed  Google Scholar 

  29. Brassard P, Amiri F, Schiffrin EL. Combined angiotensin II type 1 and type 2 receptor blockade on vascular remodeling and matrix metalloproteinases in resistance arteries. Hypertension. 2005;46:598–606.

    Article  CAS  PubMed  Google Scholar 

  30. Barhoumi T, Mian MOR, Fraulob-Aquino JC, et al. Matrix metalloproteinase-2 knockout prevents angiotensin II-induced endothelial dysfunction and vascular remodeling, oxidative stress and inflammation. Cardiovasc Res. 2017;113:1752–62.

    Article  CAS  Google Scholar 

  31. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens. 2001;19:921–30.

    Article  CAS  PubMed  Google Scholar 

  32. Intengan HD, Schiffrin EL. Vascular remodeling in hypertension—roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38:581–7.

    Article  CAS  PubMed  Google Scholar 

  33. Levy B, Schiffrin EL, Mourad JJ, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity and diabetes. Circulation. 2008;118:968–76.

    Article  PubMed  Google Scholar 

  34. Rizzoni D, Porteri E, Boari GE, et al. Prognostic significance of small-artery structure in hypertension. Circulation. 2003;108:2230–5.

    Article  PubMed  Google Scholar 

  35. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial NO synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54:1384–92.

    Article  CAS  PubMed  Google Scholar 

  36. Deng LY, Li JS, Schiffrin EL. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Clin Sci. 1995;88:611–22.

    Article  CAS  Google Scholar 

  37. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15:1983–92.

    Article  CAS  PubMed  Google Scholar 

  38. Mason JC, Libby P. Cardiovascular disease in patients with chronic inflammation: mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur Heart J. 2015;36:482–9.

    Article  PubMed  Google Scholar 

  39. Armstrong AW, Harskamp CT, Armstrong EJ. The association between psoriasis and hypertension: a systematic review and meta-analysis of observational studies. J Hypertens. 2013;31:433–43.

    Article  CAS  PubMed  Google Scholar 

  40. Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci. 2007;112:375–84.

    Article  CAS  Google Scholar 

  41. Hoeppli RE, Wu D, Cook L, Levings MG. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol. 2015;6:1–14.

    Article  CAS  Google Scholar 

  42. Wilck N, Matus MG, Kearney SM, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirabo A, Fontana V, de Faria AP, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124:4642–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Ciuceis C, Amiri F, Brassard P, et al. Reduced vascular remodeling, endothelial dysfunction and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25:2106–13.

    Article  PubMed  CAS  Google Scholar 

  45. Ko EA, Amiri F, Pandey NR, Touyz RM, Schiffrin EL. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-csf-deficient mice. Am J Physiol Heart Circ Physiol. 2007;292:H1789–95.

    Article  CAS  PubMed  Google Scholar 

  46. Wenzel P, Knorr M, Kossmann S, et al. Lysozyme M–positive monocytes mediate angiotensin II–induced arterial hypertension and vascular dysfunction. Circulation. 2011;124:1370–81.

    Article  CAS  PubMed  Google Scholar 

  47. Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Madhur M, Lob HE, McCann LA, et al. Interleukin 17 promotes angiotensin II–induced hypertension and vascular dysfunction. Hypertension. 2010;55:500–5.

    Article  CAS  PubMed  Google Scholar 

  49. Wu J, Thabet SR, Kirabo A, et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ Res. 2014;114:616–25.

    Article  CAS  PubMed  Google Scholar 

  50. Norlander AE, Saleh MA, Pandey AK, Itani HA, Wu J, Xiao L, Kang J, Dale BL, Goleva SB, Laroumanie F, Du L, Harrison DG, Madhur MS. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight. 2017;2. https://doi.org/10.1172/jci.insight.92801.

  51. Trott DW, Thabet SR, Kirabo A, et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension. 2014;64:1108–15.

    Article  CAS  PubMed  Google Scholar 

  52. UCSC Human Gene Sorter. http://genome.ucsc.edu/cgi-bin/hgNear. Accessed July 14, 2007.

  53. Viel EC, Lemarié CA, Benkirane K, Paradis P, Schiffrin EL. Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol. 2010;298:H938–44.

    Article  CAS  PubMed  Google Scholar 

  54. Leibowitz AA, Li MW, Paradis P, Schiffrin EL. Chromosome 2 plays a role in high salt diet-induced hypertension and vascular remodeling in Dahl salt-sensitive rats. Hypertension. 2011;58:e44.

    Google Scholar 

  55. Barhoumi T, Kasal DAB, Li MW, et al. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension. 2011;57:469–76.

    Article  CAS  PubMed  Google Scholar 

  56. Mian MOR, Barhoumi T, Briet M, Paradis P, Schiffrin EL. Deficiency of T regulatory cells exaggerates angiotensin II-induced microvascular injury by enhancing immune responses. J Hypertens. 2016;34:97–108.

    Google Scholar 

  57. Kasal DA, Barhoumi T, Li MW, et al. Aldosterone-induced hypertension and vascular injury was attenuated by adoptive transfer of T-regulatory lymphocytes. Hypertension. 2012;59:324–30.

    Article  CAS  PubMed  Google Scholar 

  58. Stachon P, Heidenreich A, Merz J, et al. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation. 2017;135:2524–33.

    Article  CAS  PubMed  Google Scholar 

  59. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16:1114–23.

    Article  CAS  PubMed  Google Scholar 

  60. Caillon A, Mian MOR, Fraulob-Aquino JC, et al. Gamma delta T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation. 2017;135:2155–62.

    Article  CAS  PubMed  Google Scholar 

  61. De Ciuceis C, Rossini C, Airo P, et al. Relationship between different subpopulations of circulating CD4+ T-lymphocytes and microvascular structural alterations in humans. Am J Hypertens. 2017;30:51–60.

    Article  PubMed  CAS  Google Scholar 

  62. Chan CT, Sobey CG, Lieu M, et al. Obligatory role for B cells in the development of angiotensin II-dependent hypertension. Hypertension. 2015;66:1023–33.

    Article  CAS  PubMed  Google Scholar 

  63. Markó L, Kvakan H, Park JK, et al. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension. 2012;60:1430–6.

    Article  PubMed  CAS  Google Scholar 

  64. Saleh MA, McMaster WG, Wu J, et al. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation. J Clin Invest. 2015;125:1189–202.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee DL, Sturgis LC, Labazi H, Osborne JB Jr, Fleming C, Pollock JS, Manhiani M, Imig JD, Brands MW. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol. 2006;290:H935–40.

    Article  CAS  PubMed  Google Scholar 

  66. Ye J, Ji Q, Liu J, et al. Interleukin 22 promotes blood pressure elevation and endothelial dysfunction in angiotensin II–treated mice. J Am Heart Assoc. 2017:e005875. https://doi.org/10.1161/JAHA.117.005875.

  67. Wang L, Zhao XC, Cui W, et al. Genetic and pharmacologic inhibition of the chemokine receptor CXCR2 prevents experimental hypertension and vascular dysfunction. Circulation. 2016;134:1353–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work of the author was supported by Canadian Institutes of Health Research (CIHR) grants 37917, 82790, 102606, and 123465 and by the Canada Fund for Innovation and currently by the First Pilot Foundation Grant 143348 from the CIHR and by a Canada Research Chair (CRC) on Hypertension and Vascular Research from the CIHR/Government of Canada CRC Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto L. Schiffrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schiffrin, E.L. (2020). Immune Mechanisms in Vascular Remodeling in Hypertension. In: Agabiti-Rosei, E., Heagerty, A.M., Rizzoni, D. (eds) Microcirculation in Cardiovascular Diseases. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-47801-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47801-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47800-1

  • Online ISBN: 978-3-030-47801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics