Skip to main content

Pathophysiological Mechanisms Implicated in Organ Damage and Cardiovascular Events

  • Chapter
  • First Online:
Microcirculation in Cardiovascular Diseases

Abstract

Globally, societies are burdened with higher rates of chronic and cardiovascular diseases draining the limited healthcare resources. This is due to growth in aging populations as a consequence of improved social conditions, enhanced healthcare provisions and availability of high-calorie diets coupled with sedentary lifestyles.

Over the past decade, metabolic syndrome (MetS) has firmly established itself as a major risk factor for cardiovascular events. MetS is a constellation of three disorders: obesity, hypertension and diabetes mellitus (DM). Each of these can exist in isolation, but we are slowly beginning to appreciate that in fact they exist as a spectrum of conditions and there is an intricate interplay between these disease states which share a common aetiology and pathobiology at cellular and microvascular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAT:

Brown adipose tissue

CAD:

Coronary artery disease

DM:

Diabetes mellitus

EC:

Endothelial cell

EDCFs:

Endothelium-derived constricting factors

EDHF:

Endothelium-derived hyperpolarising factor

EDRFs:

Endothelium-derived relaxing factors

EFS:

Electric field stimulation

MetS:

Metabolic syndrome

NO:

Nitric oxide

PVAT:

Perivascular adipose tissue

RAAS:

Renin-angiotensin-aldosterone system

ROS:

Reactive oxygen species

SNS:

Sympathetic nervous system

T2DM:

Type 2 diabetes mellitus

VSMC:

Vascular smooth muscle cell

WAT:

White adipose tissue

References

  1. Khavandi K, Greenstein AS, Sonoyama K, Withers S, Price A, Malik RA, et al. Myogenic tone and small artery remodelling: insight into diabetic nephropathy. Nephrol Dial Transplant. 2009;24(2):361–9.

    Article  PubMed  Google Scholar 

  2. Chang JB, editor. Textbook of angiology. New York: Springer; 2000.

    Google Scholar 

  3. Beverly J, Hunt LP, Schachter M, Halliday A, editors. An introduction to vascular biology. 2nd ed. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  4. Feletou M, Vanhoutte PM. EDHF: an update. Clin Sci (Lond). 2009;117(4):139–55.

    Article  CAS  Google Scholar 

  5. Bellien J, Thuillez C, Joannides R. Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans. Fundam Clin Pharmacol. 2008;22(4):363–77.

    Article  CAS  PubMed  Google Scholar 

  6. Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983;53(5):557–73.

    Article  CAS  PubMed  Google Scholar 

  7. Furchgott RF, Cherry PD, Zawadzki JV, Jothianandan D. Endothelial cells as mediators of vasodilation of arteries. J Cardiovasc Pharmacol. 1984;6(Suppl 2):S336–43.

    Article  PubMed  Google Scholar 

  8. Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34(12):1508–12.

    Article  CAS  PubMed  Google Scholar 

  9. Vallance P. Endothelial regulation of vascular tone. Postgrad Med J. 1992;68(803):697–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23(8):374–80.

    Article  CAS  PubMed  Google Scholar 

  11. Widimsky J, Fejfarova MH, Fejfar Z. Changes of cardiac output in hypertensive disease. Cardiologia. 1957;31(5):381–9.

    Article  CAS  PubMed  Google Scholar 

  12. SPJ J. Autonomic nervous and behavioural factors in hypertension. In: JHBB L, editor. Hypertension: pathophysiology diagnosis and management. New York: Raven Press; 1990. p. 2083–90.

    Google Scholar 

  13. Lund-Johansen P. Twenty-year follow-up of hemodynamics in essential hypertension during rest and exercise. Hypertension. 1991;18(5 Suppl):III54–61.

    CAS  PubMed  Google Scholar 

  14. Julius S, Pascual AV, Sannerstedt R, Mitchell C. Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation. 1971;43(3):382–90.

    Article  CAS  PubMed  Google Scholar 

  15. Esler M, Julius S, Zweifler A, Randall O, Harburg E, Gardiner H, et al. Mild high-renin essential hypertension. Neurogenic human hypertension? N Engl J Med. 1977;296(8):405–11.

    Article  CAS  PubMed  Google Scholar 

  16. Bright R. Tabular view of the morbid appearances in 100 cases connected with albuminous urine with observations. Guy’s Hosp Rep. 1836;1:380–400.

    Google Scholar 

  17. Heagerty AM, Aalkjaer C, Bund SJ, Korsgaard N, Mulvany MJ. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension. 1993;21(4):391–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, et al. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell. 2006;124(5):929–42.

    Article  CAS  PubMed  Google Scholar 

  19. Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation. 2002;106(24):3037–43.

    Article  PubMed  Google Scholar 

  20. Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM. Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens. 2005;23(2):247–50.

    Article  CAS  PubMed  Google Scholar 

  21. Goode GK, Heagerty AM. In vitro responses of human peripheral small arteries in hypercholesterolemia and effects of therapy. Circulation. 1995;91(12):2898–903.

    Article  CAS  PubMed  Google Scholar 

  22. Kotsis V, Stabouli S, Papakatsika S, Rizos Z, Parati G. Mechanisms of obesity-induced hypertension. Hypertens Res. 2010;33(5):386–93.

    Article  PubMed  Google Scholar 

  23. Yudkin JS, Eringa E, Stehouwer CD. "Vasocrine" signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365(9473):1817–20.

    Article  PubMed  Google Scholar 

  24. Safar ME, Czernichow S, Blacher J. Obesity, arterial stiffness, and cardiovascular risk. J Am Soc Nephrol. 2006;17(4 Suppl 2):S109–11.

    Article  PubMed  Google Scholar 

  25. Singhal A, Farooqi IS, Cole TJ, O'Rahilly S, Fewtrell M, Kattenhorn M, et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation. 2002;106(15):1919–24.

    Article  CAS  PubMed  Google Scholar 

  26. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48.

    Article  PubMed  Google Scholar 

  27. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242–56.

    Article  CAS  PubMed  Google Scholar 

  28. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes. 2010;34(6):949–59.

    Article  CAS  Google Scholar 

  29. Saxton SN, Ryding KE, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Role of sympathetic nerves and adipocyte catecholamine uptake in the Vasorelaxant function of perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2018;38(4):880–91.

    Google Scholar 

  30. Withers SB, Simpson L, Fattah S, Werner ME, Heagerty AM. cGMP-dependent protein kinase (PKG) mediates the anticontractile capacity of perivascular adipose tissue. Cardiovasc Res. 2013;101(1):130–7.

    Article  PubMed  CAS  Google Scholar 

  31. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70.

    Article  CAS  PubMed  Google Scholar 

  32. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4):901–11.

    Article  CAS  PubMed  Google Scholar 

  33. Bulow J, Astrup A, Christensen NJ, Kastrup J. Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load. Acta Physiol Scand. 1987;130(4):657–61.

    Article  CAS  PubMed  Google Scholar 

  34. Coppack SW, Evans RD, Fisher RM, Frayn KN, Gibbons GF, Humphreys SM, et al. Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism. 1992;41(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  35. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100(2):227–35.

    Article  CAS  PubMed  Google Scholar 

  37. Salgado-Somoza A, Teijeira-Fernandez E, Fernandez AL, Gonzalez-Juanatey JR, Eiras S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am J Physiol Heart Circ Physiol. 2010;299(1):H202–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351(25):2599–610.

    Article  CAS  PubMed  Google Scholar 

  39. Eiras S, Teijeira-Fernandez E, Shamagian LG, Fernandez AL, Vazquez-Boquete A, Gonzalez-Juanatey JR. Extension of coronary artery disease is associated with increased IL-6 and decreased adiponectin gene expression in epicardial adipose tissue. Cytokine. 2008;43(2):174–80.

    Article  CAS  PubMed  Google Scholar 

  40. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32(3):451–63.

    Article  CAS  Google Scholar 

  41. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Withers BS, Agabiti-Rosei C, Linvingstone DM, Little MC, Aslam R, Malik RA, et al. Macrophage activation is responsible for loss of anticontractile function in inflamed perivascular fat. Arterioscler Thromb Vasc Biol. 2011;31:908.

    Google Scholar 

  43. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes. 2006;30(9):1347–55.

    Article  CAS  Google Scholar 

  45. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100(12):7265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shah R, Hinkle CC, Ferguson JF, Mehta NN, Li M, Qu L, et al. Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes. 2011;60(5):1512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sirois-Gagnon D, Chamberland A, Perron S, Brisson D, Gaudet D, Laprise C. Association of common polymorphisms in the fractalkine receptor (CX3CR1) with obesity. Obesity (Silver Spring). 2010;19(1):222–7.

    Article  CAS  Google Scholar 

  48. Timofeeva AV, Goryunova LE, Khaspekov GL, Kovalevskii DA, Scamrov AV, Bulkina OS, et al. Altered gene expression pattern in peripheral blood leukocytes from patients with arterial hypertension. Ann N Y Acad Sci. 2006;1091:319–35.

    Article  CAS  PubMed  Google Scholar 

  49. Flierl U, Bauersachs J, Schafer A. Modulation of platelet and monocyte function by the chemokine fractalkine (CX3 CL1) in cardiovascular disease. Eur J Clin Investig. 2015;45(6):624–33.

    Article  CAS  Google Scholar 

  50. Withers SB, Forman R, Meza-Perez S, Sorobetea D, Sitnik K, Hopwood T, et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci Rep. 2017;7:44571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler Thromb Vasc Biol. 2016;36(7):1377–85.

    Article  CAS  PubMed  Google Scholar 

  52. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, et al. The effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62(2):128–35.

    Google Scholar 

  53. Aghamohammadzadeh R, Unwin RD, Greenstein AS, Heagerty AM. Effects of obesity on perivascular adipose tissue vasorelaxant function: nitric oxide, inflammation and elevated systemic blood pressure. J Vasc Res. 2015;52(5):299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Aghamohammadzadeh R, Withers S, Lynch F, Greenstein A, Malik R, Heagerty A. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol. 2012;165(3):670–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aghamohammadzadeh R, Heagerty AM. Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann Med. 2012;44(Suppl 1):S74–84.

    Article  CAS  PubMed  Google Scholar 

  56. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes. 2009;58(12):2731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ouwens DM, Bekaert M, Lapauw B, Van Nieuwenhove Y, Lehr S, Hartwig S, et al. Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem. 2012;118(3):135–8.

    Article  CAS  PubMed  Google Scholar 

  58. Schipper HS, Nuboer R, Prop S, van den Ham HJ, de Boer FK, Kesmir C, et al. Systemic inflammation in childhood obesity: circulating inflammatory mediators and activated CD14++ monocytes. Diabetologia. 2012;55(10):2800–10.

    Article  CAS  PubMed  Google Scholar 

  59. Verrijn Stuart AA, Schipper HS, Tasdelen I, Egan DA, Prakken BJ, Kalkhoven E, et al. Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J Clin Endocrinol Metab. 2011;97(2):463–72.

    Article  PubMed  CAS  Google Scholar 

  60. Kunimoto H, Kazama K, Takai M, Oda M, Okada M, Yamawaki H. Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Am J Physiol Heart Circ Physiol. 2015;309(5):H1017–28.

    Article  CAS  PubMed  Google Scholar 

  61. Ferland DJ, Darios ES, Neubig RR, Sjogren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vasc Pharmacol. 2017;88:30–41.

    Article  CAS  Google Scholar 

  62. Chakaroun R, Raschpichler M, Kloting N, Oberbach A, Flehmig G, Kern M, et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism. 2011;61(5):706–14.

    Article  PubMed  CAS  Google Scholar 

  63. Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2010;95(6):2892–6.

    Article  CAS  PubMed  Google Scholar 

  64. Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, et al. Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab. 2012;97(4):E556–64.

    Article  CAS  PubMed  Google Scholar 

  65. Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P. Increased adipose angiotensinogen gene expression in human obesity. Obesity. 2000;8(4):337–41.

    Article  Google Scholar 

  66. Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension. 2000;35(6):1270–7.

    Article  CAS  PubMed  Google Scholar 

  67. Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension. 2004;43(3):518–24.

    Article  CAS  PubMed  Google Scholar 

  68. Goodfriend TL, Egan BM, Kelley DE. Aldosterone in obesity. Endocr Res. 1998;24(3–4):789–96.

    Article  CAS  PubMed  Google Scholar 

  69. Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res. 1999;7(4):355–62.

    Article  CAS  PubMed  Google Scholar 

  70. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation. 2008;117(17):2253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maron BA, Zhang YY, Handy DE, Beuve A, Tang SS, Loscalzo J, et al. Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells. J Biol Chem. 2009;284(12):7665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang H, Shimosawa T, Matsui H, Kaneko T, Ogura S, Uetake Y, et al. Paradoxical mineralocorticoid receptor activation and left ventricular diastolic dysfunction under high oxidative stress conditions. J Hypertens. 2008;26(7):1453–62.

    Article  CAS  PubMed  Google Scholar 

  73. Gao YJ, Takemori K, Su LY, An WS, Lu C, Sharma AM, et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion. Cardiovasc Res. 2006;71(2):363–73.

    Article  CAS  PubMed  Google Scholar 

  74. Lu C, Su LY, Lee RM, Gao YJ. Mechanisms for perivascular adipose tissue-mediated potentiation of vascular contraction to perivascular neuronal stimulation: the role of adipocyte-derived angiotensin II. Eur J Pharmacol. 2011;634(1–3):107–12.

    Google Scholar 

  75. Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med. 2007;13(2):189–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maron BA, Leopold JA. Aldosterone receptor antagonists: effective but often forgotten. Circulation. 2010;121(7):934–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  78. Rahmouni K, Barthelmebs M, Grima M, Imbs JL, De Jong W. Involvement of brain mineralocorticoid receptor in salt-enhanced hypertension in spontaneously hypertensive rats. Hypertension. 2001;38(4):902–6.

    Article  CAS  PubMed  Google Scholar 

  79. Vaziri ND, Ni Z, Oveisi F, Trnavsky-Hobbs DL. Effect of antioxidant therapy on blood pressure and NO synthase expression in hypertensive rats. Hypertension. 2000;36(6):957–64.

    Article  CAS  PubMed  Google Scholar 

  80. Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maryam B, Victor TA, Adkison MG, Wade SW, Timothy JB. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Phys Regul Integr Comp Phys. 1998;275(1):R291–R9.

    Google Scholar 

  82. Michelle TF, Timothy JB. Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am J Phys Regul Integr Comp Phys. 2006;291(6):R1630–R7.

    Google Scholar 

  83. Correll JW. Adipose tissue: ability to respond to nerve stimulation in vitro. Science. 1963;140(3565):387–8.

    Article  CAS  PubMed  Google Scholar 

  84. Nilton AB, Marcia NB, Timothy JB. Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Phys Regul Integr Comp Phys. 2008;294(5):R1445–R52.

    Google Scholar 

  85. Egawa M, Yoshimatsu H, Bray GA. Effects of 2-deoxy-D-glucose on sympathetic nerve activity to interscapular brown adipose tissue. Am J Phys Regul Integr Comp Phys. 1989;257(6):R1377–R85.

    CAS  Google Scholar 

  86. Niijima A. Nervous regulation of metabolism. Prog Neurobiol. 1989;33(2):135–47.

    Article  CAS  PubMed  Google Scholar 

  87. Wirsen C. Adrenergic innervation of adipose tissue examined by fluorescence microscopy. Nature. 1964;202(4935):913.

    Article  CAS  PubMed  Google Scholar 

  88. Lever JD, Jung RT, Nnodim JO, Leslie PJ, Symons D. Demonstration of a catecholaminergic innervation in human perirenal brown adipose tissue at various ages in the adult. Anat Rec. 1986;215(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  89. Cannon B, Nedergaard J, Lundberg JM, Hokfelt T, Terenius L, Goldstein M. Neuropeptide tyrosine (NPY) is co-stored with noradrenaline in vascular but not in parenchymal sympathetic nerves of brown adipose tissue. Exp Cell Res. 1986;164(2):546–50.

    Article  CAS  PubMed  Google Scholar 

  90. Slavin BG, Ballard KW. Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec. 1978;191(3):377–89.

    Article  CAS  PubMed  Google Scholar 

  91. Torok J, Zemancikova A, Kocianova Z. Interaction of perivascular adipose tissue and sympathetic nerves in arteries from normotensive and hypertensive rats. Physiol Res. 2016;65(Supplementum 3):S391–S9.

    Article  CAS  PubMed  Google Scholar 

  92. Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev. 2019;99(4):1701–63.

    Article  CAS  PubMed  Google Scholar 

  93. Chrousos GP. The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes. 2000;24(2):S50–S5.

    Article  CAS  Google Scholar 

  94. Manolis AJ, Poulimenos LE, Kallistratos MS, Gavras I, Gavras H. Sympathetic overactivity in hypertension and cardiovascular disease. Curr Vasc Pharmacol. 2014;12(1):4–15.

    Article  CAS  PubMed  Google Scholar 

  95. Smith MM, Minson CT. Obesity and adipokines: effects on sympathetic overactivity. J Physiol. 2019;590(8):1787–801.

    Article  CAS  Google Scholar 

  96. Lemche E, Chaban OS, Lemche AV. Neuroendorine and epigentic mechanisms subserving autonomic imbalance and HPA dysfunction in the metabolic syndrome. Front Neurosci. [Review]. 2016;10:142.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2006;1083(1):129–52.

    Article  CAS  PubMed  Google Scholar 

  98. Muntzel Martin S, Al-Naimi Omar Ali S, Barclay A, Ajasin D. Cafeteria diet increases fat mass and chronically elevates lumbar sympathetic nerve activity in rats. Hypertension. 2019;60(6):1498–502.

    Article  CAS  Google Scholar 

  99. Davy KP, Orr JS. Sympathetic nervous system behavior in human obesity. Neurosci Biobehav Rev. 2009;33(2):116–24.

    Article  PubMed  Google Scholar 

  100. Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR, et al. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17(8):1125–33.

    Article  CAS  PubMed  Google Scholar 

  101. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48(5):787–96.

    Article  CAS  PubMed  Google Scholar 

  102. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009;119(7):978–86.

    Article  CAS  PubMed  Google Scholar 

  103. Gosmanov AR, Smiley DD, Robalino G, Siquiera J, Khan B, Le NA, et al. Effects of oral and intravenous fat load on blood pressure, endothelial function, sympathetic activity, and oxidative stress in obese healthy subjects. Am J Physiol Endocrinol Metab. 2010;299(6):E953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Heagerty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aghamohammadzadeh, R., Heagerty, A.M. (2020). Pathophysiological Mechanisms Implicated in Organ Damage and Cardiovascular Events. In: Agabiti-Rosei, E., Heagerty, A.M., Rizzoni, D. (eds) Microcirculation in Cardiovascular Diseases. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-47801-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47801-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47800-1

  • Online ISBN: 978-3-030-47801-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics