Skip to main content

Does Induction Immunotherapy Confer Increased Operative Risk for Lung Resection?

  • Chapter
  • First Online:
Difficult Decisions in Thoracic Surgery

Abstract

Promising and often durable initial results following immunotherapy for metastatic and advanced stage non-small cell lung cancer (NSCLC) have prompted researchers to evaluate the safety and efficacy of this approach for early and locally advanced resectable disease. The few published trials on this topic suggest that induction immune checkpoint inhibitor (ICI) monotherapy is safe. Results of multiple phase III studies show that doublet chemotherapy plus immune checkpoint inhibitor treatment is well-tolerated in patients with metastatic NSCLC. However, at present, no published trials have examined the safety and efficacy of induction immunotherapy with or without chemotherapy in this patient population. Although the published studies do not offer a definitive assessment of operative risk, multiple ongoing phase III trials of induction chemotherapy and immunotherapy are seeking to address this knowledge gap. Two key unanswered questions remain: What are the technical challenges incurred by the inflammatory response reported after induction immunotherapy? And does induction immunotherapy increase the perioperative risk associated with the use of immune checkpoint inhibitors as part of an induction strategy? Early findings, almost exclusively with ICI monotherapy, reveal a good pathologic response rate, with high rates of R0 resection. Anecdotal reports suggest surgical resections may be more technically challenging secondary to increased inflammation, fibrosis, and loss of normal tissue planes, particularly in the hilum and perivascular regions. Induction and adjuvant ICIs, either alone or, more likely, in combination with chemotherapy, are almost certainly going to be used for operable NSCLC in the future. Although the published data currently do not offer a definitive assessment of operative risk, we do not believe operative risk is substantively increased with monotherapy immunotherapy. Multiple ongoing phase III trials of induction chemotherapy and immunotherapy will definitively address this question by the mid-2020s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brandt WS, Bouabdallah I, Tan KS, Park BJ, Adusumilli PS, Molena D, et al. Factors associated with distant recurrence following R0 lobectomy for pN0 lung adenocarcinoma. J Thorac Cardiovasc Surg. 2018;155(3):1212–24.

    Article  Google Scholar 

  2. Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26(21):3552–9.

    Article  Google Scholar 

  3. International Adjuvant Lung Cancer Trial Collaborative Group. Cisplatin-based adjuvant chemotherapy in patients with completely resected non–small-cell lung cancer. New Engl J Med. 2004;350(4):351–60.

    Article  Google Scholar 

  4. Waller D, Peake MD, Stephens RJ, Gower NH, Milroy R, Parmar MK, et al. Chemotherapy for patients with non-small cell lung cancer: the surgical setting of the Big Lung Trial. Eur J Cardio-Thorac. 2004;26(1):173–82.

    Article  CAS  Google Scholar 

  5. Girard N, Mornex F, Douillard JY, Bossard N, Quoix E, Beckendorf V, et al. Is neoadjuvant chemoradiotherapy a feasible strategy for stage IIIA-N2 non-small cell lung cancer? Mature results of the randomized IFCT-0101 phase II trial. Lung Cancer. 2010;69(1):86–93.

    Article  Google Scholar 

  6. Katakami N, Tada H, Mitsudomi T, Kudoh S, Senba H, Matsui K, et al. A phase 3 study of induction treatment with concurrent chemoradiotherapy versus chemotherapy before surgery in patients with pathologically confirmed N2 stage IIIA nonsmall cell lung cancer (WJTOG9903). Cancer. 2012;118(24):6126–35.

    Article  CAS  Google Scholar 

  7. Pless M, Stupp R, Ris HB, Stahel RA, Weder W, Thierstein S, et al. Induction chemoradiation in stage IIIA/N2 non-small-cell lung cancer: a phase 3 randomised trial. Lancet. 2015;386(9998):1049–56.

    Article  Google Scholar 

  8. Bakos O, Lawson C, Rouleau S, Tai LH. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. J Immunother Cancer. 2018;6(1):1–1.

    Article  Google Scholar 

  9. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.

    Article  CAS  Google Scholar 

  10. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–50.

    Article  CAS  Google Scholar 

  11. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.

    Article  CAS  Google Scholar 

  12. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.

    Article  CAS  Google Scholar 

  13. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  Google Scholar 

  14. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  Google Scholar 

  15. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  Google Scholar 

  16. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  Google Scholar 

  17. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  Google Scholar 

  18. Hellmann MD, Chaft JE, William WN Jr, Rusch V, Pisters KM, Kalhor N, et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol. 2014;15(1):e42–50.

    Article  CAS  Google Scholar 

  19. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378(21):1976–86.

    Article  CAS  Google Scholar 

  20. Bott MJ, Yang SC, Park BJ, Adusumilli PS, Rusch VW, Isbell JM, et al. Initial results of pulmonary resection after neoadjuvant nivolumab in patients with resectable non–small cell lung cancer. J Thorac Cardiovasc Surg. 2019;158(1):269–76.

    Article  CAS  Google Scholar 

  21. Yang CF, McSherry F, Mayne NR, Wang X, Berry MF, Tong B, et al. Surgical outcomes after neoadjuvant chemotherapy and ipilimumab for non-small cell lung cancer. Ann Thorac Surg. 2018;105(3):924–9.

    Article  Google Scholar 

  22. Bott MJ, Cools-Lartigue J, Tan KS, Dycoco J, Bains MS, Downey RJ, et al. Safety and feasibility of lung resection after immunotherapy for metastatic or unresectable tumors. Ann Thorac Surg. 2018;106(1):178–83.

    Article  Google Scholar 

  23. Chaft JE, Hellmann MD, Velez MJ, Travis WD, Rusch VW. Initial experience with lung cancer resection after treatment with T-cell checkpoint inhibitors. Ann Thorac Surg. 2017;104(3):e217–8.

    Article  Google Scholar 

  24. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–68.

    Article  CAS  Google Scholar 

  25. Arnaud-Coffin P, Maillet D, Gan HK, Stelmes JJ, You B, Dalle S, et al. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int J Cancer. 2019;145(3):639–48.

    Article  CAS  Google Scholar 

  26. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2(10):1346–53.

    Article  Google Scholar 

  27. Yanai S, Nakamura S, Matsumoto T. Nivolumab-induced colitis treated by infliximab. Clin Gastroenterol Hepatol. 2017;15(4):e80–1.

    Article  Google Scholar 

  28. Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35:709–17.

    Article  CAS  Google Scholar 

  29. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41.

    Article  CAS  Google Scholar 

  30. Nishino M, Giobbie-Hurder A, Hatabu H, Ramaiya NH, Hodi FS. Incidence of programmed cell death 1 inhibitor–related pneumonitis in patients with advanced cancer: a systematic review and meta-analysis. JAMA Oncol. 2016;2(12):1607–16.

    Article  Google Scholar 

  31. Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol. 2017;28:583–9.

    Article  CAS  Google Scholar 

  32. Abdel-Rahman O, El Halawani H, Fouad M. Risk of endocrine complications in cancer patients treated with immune check point inhibitors: a meta-analysis. Future Oncol. 2016;12:413–25.

    Article  CAS  Google Scholar 

  33. Sepesi B, Cascone T, William W, Lin H, Leung C, Weissferdt A, et al. Surgical outcomes following neoadjuvant nivolumab or nivolumab plus ipilimumab in non-small cell lung cancer–NEOSTAR study. J Thorac Oncol. 2019;14(10):S241–2.

    Article  Google Scholar 

  34. Provencio M, Nadal E, Insa A, Campelo RG, Casal J, Domine M, et al. NADIM study: updated clinical research and outcomes. J Thorac Oncol. 2019;14(10):S241.

    Article  Google Scholar 

  35. Kwiatkowski DJ, Rusch VW, Chaft JE, Johnson BE, Nicholas A, Wistuba II, et al. Neoadjuvant atezolizumab in resectable non-small cell lung cancer (NSCLC): interim analysis and biomarker data from a multicenter study (LCMC3). J Thorac Oncol. 2019;37(15):S8503.

    Google Scholar 

  36. Eichhorn F, Klotz LV, Bischoff H, Thomas M, Lasitschka F, Winter H, et al. Neoadjuvant anti-programmed death-1 immunotherapy by pembrolizumab in resectable nodal positive stage II/IIIa non-small-cell lung cancer (NSCLC): the NEOMUN trial. BMC Cancer. 2019;19(1):413.

    Article  Google Scholar 

  37. Shu CA, Grigg C, Chiuzan C, Garofano RF, Patel V, Hernandez S, et al. Neoadjuvant atezolizumab + chemotherapy in resectable non-small cell lung cancer (NSCLC). J Clin Oncol. 2018;36(Suppl 15):8532.

    Article  Google Scholar 

  38. Bar J, Urban D, Ofek E, Ackerstein A, Redinsky I, Golan N, et al. Neoadjuvant pembrolizumab (pembro) for early stage non-small cell lung cancer (NSCLC): updated report of a phase I study, MK3475-223. J Clin Oncol. 2019;37(Suppl 15):8534.

    Article  Google Scholar 

Download references

Acknowledgement

Disclosures: Matthew J. Bott serves as a consultant for AstraZeneca. David R. Jones serves as a senior medical advisor for Diffusion Pharmaceuticals and a consultant for Merck and AstraZeneca. James G. Connolly has no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Connolly, J.G., Bott, M.J., Jones, D.R. (2020). Does Induction Immunotherapy Confer Increased Operative Risk for Lung Resection?. In: Ferguson, M. (eds) Difficult Decisions in Thoracic Surgery. Difficult Decisions in Surgery: An Evidence-Based Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-47404-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47404-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47403-4

  • Online ISBN: 978-3-030-47404-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics