Skip to main content

Stepwise Transfer of Domain Knowledge for Computer-Aided Diagnosis in Pathology Using Deep Neural Networks

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

Deep learning using deep convolutional neural networks (DCNNs) has demonstrated unprecedented power in image classification. Subsequently, computer-aided diagnosis (CAD) for pathology imaging has been largely facilitated by DCNN approaches. However, because DCNNs require massive amounts of labeled data, the lack of availability of such pathology image data as well as the high cost of labeling new data is currently a major problem. To avoid expensive data labeling efforts, transfer learning is a concept intended to overcome training data shortages by passing knowledge from the source domain to the target domain. However, weak relevance between the source and target domains generally leads to less effective transfers. Therefore, following the natural step-by-step process by which humans learn and make inferences, a stepwise fine-tuning scheme is proposed by introducing intermediate domains to bridge the source and target domains. The DCNNs are expected to acquire general object classification knowledge from a source domain dataset such as ImageNet and pathology-related knowledge from intermediate domain data, which serve as fundamental and specific knowledge, respectively, for the final benign/malignant classification task. To realize this, we introduce several ways to provide pathology-related knowledge by generating an intermediate dataset classified into various corresponding pathology features. In experiments, the proposed scheme has demonstrated good performance on several well-known deep neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136(5), E359–E386 (2005)

    Article  Google Scholar 

  2. Morrison, A.O., Gardner, J.M.: Microscopic image photography techniques of the past, present, and future. Arch. Pathol. Lab. Med. 139(12), 1558–1564 (2015)

    Article  Google Scholar 

  3. The Japanese society of pathology: the Japanese society of pathology guideline 2015, In: The Japanese Society of Pathology, p. 6 (2015)

    Google Scholar 

  4. Robboy, S.J., et al.: Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch. Pathol. Lab. Med. 137(12), 1723–1732 (2013)

    Article  Google Scholar 

  5. How telemedicine answers global pathology demands. https://proscia.com/blog/2015/07/14/global-crisis-digital-solution. Accessed 19 Mar 2018

  6. Jondet, M., Agoli-Agbo, R., Dehennin, L.: Automatic measurement of epithelium differentiation and classification of cervical intraneoplasia by computerized image analysis. Diagn. Pathol. 5(1), 7 (2010). https://doi.org/10.1186/1746-1596-5-7

    Article  Google Scholar 

  7. Esgiar, A.N., Naguib, R.N., Sharif, B.S., Bennett, M.K., Murray, A.: Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa. IEEE Trans. Inf. Technol. Biomed. 2(3), 197–203 (1998)

    Article  Google Scholar 

  8. Diamond, J., Anderson, N.H., Bartels, P.H., Montironi, R., Hamilton, P.W.: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 35(9), 1121–1131 (2004)

    Article  Google Scholar 

  9. Masood, K., Rajpoot, N.: Texture based classification of hyperspectral colon biopsy samples using CLBP. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1011–1014 (2009)

    Google Scholar 

  10. Sertel, O., Kong, J., Shimada, H., Catalyurek, U.V., Saltz, J.H., Gurcan, M.N.: Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recogn. 42(6), 1093–1103 (2009)

    Article  Google Scholar 

  11. Kather, J.N., et al.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016)

    Article  Google Scholar 

  12. Qu, J., Nosato, H., Sakanashi, H., Terai, K., Hiruta, N.: Cancer detection from pathological images using higher-order local autocorrelation feature. In: 2012 IEEE 11th International Conference on Signal Processing, vol. 2, pp. 1198–1201 (2012)

    Google Scholar 

  13. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  14. Raphaël, M.: The need for careful data collection for pattern recognition in digital pathology. J. Pathol. Inf. 8(19) (2017)

    Google Scholar 

  15. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  16. Bejnordi, B.E., et al.: Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35(2), 404–415 (2015)

    Article  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  18. Xu, Y., et al.: Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinform. 18(1), 281 (2017)

    Article  Google Scholar 

  19. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  20. Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016)

    Article  Google Scholar 

  21. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  22. Ciompi, F., et al.: The importance of stain normalization in colorectal tissue classification with convolutional networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 160–163 (2017)

    Google Scholar 

  23. Shah, M., Wang, D., Rubadue, C., Suster, D., Beck, A.: Deep learning assessment of tumor proliferation in breast cancer histological images. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 600–603 (2017)

    Google Scholar 

  24. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: MDNet: a semantically and visually interpretable medical image diagnosis network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6428–6436 (2017)

    Google Scholar 

  25. Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., Li, S.: Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 7(1), 4172 (2017)

    Article  Google Scholar 

  26. CAMELYON16. https://camelyon16.grand-challenge.org/

  27. Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  28. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with multimodal recurrent neural networks (m-RNN). arXiv preprint arXiv:1412.6632 (2014)

  29. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  30. Guarino, M., Micheli, P., Pallotti, F.: Pathological relevance of epithelial and mesenchymal phenotype plasticity. Pathol. – Res. Pract. 195(6), 379–389 (1999)

    Article  Google Scholar 

  31. Wiseman, B.S., Werb, Z.: Stromal effects on mammary gland development and breast cancer. Science 296(5570), 1046–1049 (2002)

    Article  Google Scholar 

  32. Qu, J., Nosato, H., Sakanashi, H., Takahashi, E., Terai, K., Hiruta, N.: Computational cancer detection of pathological images based on an optimization method for color-index local auto-correlation feature extraction. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 822–825 (2014)

    Google Scholar 

  33. Kobayashi, T., Otsu, N.: Color image feature extraction using color index local auto-correlations. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1057–1060 (2009)

    Google Scholar 

  34. Otsu, N., Kurita, T.: A new scheme for practical flexible and intelligent vision systems. In: MVA, pp. 431–435 (1988)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  36. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  37. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  38. Jia, Q., Nobuyuki, H., Kensuke, T., Hirokazu, N., Masahiro, M., Hidenori, S.: Enhanced deep learning for pathology image classification: a knowledge transfer based stepwise fine-tuning scheme. In: 6th International Conference on BIOIMAGING, pp. 92–99 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, J., Hiruta, N., Terai, K., Nosato, H., Murakawa, M., Sakanashi, H. (2020). Stepwise Transfer of Domain Knowledge for Computer-Aided Diagnosis in Pathology Using Deep Neural Networks. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics