Skip to main content

Biomechanics of the Peroneal Tendons

  • Chapter
  • First Online:
The Peroneal Tendons

Abstract

The peroneus longus and brevis tendons, muscles, and corresponding osseous anatomy have complex structure–function relationships, which act to stabilize the forefoot and rearfoot. Mechanical importance of the peroneal tendon was first recognized by Duchenne in 1867 (Duchenne GB, Physiologie de mouvements: Translated and edited to physiology of motion. Saunders WB, Bailliere, Paris, 1949), who proposed a lowering of the foot’s arch due to abnormal function of the peroneus longus. Modern science has revealed the peroneal tendon everts the hindfoot and plantarflexes the forefoot, yet the precise biomechanical role of the peroneal muscle-tendon system is still not fully understood. Although differential diagnostic methods have improved with advances in imaging and biomechanical methodologies, the etiology of peroneal tendon pathology remains enigmatic. One explanation is the paucity of biomechanically based studies from epidemiological (population based), in vitro (cadaveric), in vivo (posture and gait analysis), and in silico (computational modeling) perspectives. This chapter summarizes contemporary biomechanical understanding and identifies several gaps in knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar Y, Alian A, Ahlawat S, Wukich DK, Chhabra A. Peroneal tendon pathology: pre- and post-operative high-resolution US and MR imaging. Eur J Radiol. 2017;92:132–44.

    PubMed  Google Scholar 

  2. Clarke HD, Kitaoka HB, Ehman RL. Peroneal tendon injuries. Foot Ankle Int. 1998;19:280–8.

    CAS  PubMed  Google Scholar 

  3. Denyer JR, Hewitt NLA, Mitchell ACS. Foot structure and muscle reaction time to a simulated ankle sprain. J Athl Train. 2013;48:326–30.

    PubMed  PubMed Central  Google Scholar 

  4. Hamid KS, Amendola A. Chronic rupture of the peroneal tendons. Foot and Ankle Clinics of Northern America. 2017;22:843–50.

    Google Scholar 

  5. Geppert MJ, Sobel M, Bohne WHO. Lateral ankle instability as a cause of superior peroneal retinacular laxity: an anatomic and biomechanical study of cadaveric feet. Foot Ankle Int. 1993;14:330–4.

    CAS  Google Scholar 

  6. Ruiz JR, Christman RA, Hillstrom HJ. William J. Stickel Silver Award. Anatomical considerations of the peroneal tubercle. J Am Podiatr Med Assoc. 1993;83:563–75.

    CAS  PubMed  Google Scholar 

  7. Palmanovich E, Laver L, Brin YS, Kotz E, Hetsroni I, Mann G, et al. Peroneus longus tear and its relation to the peroneal tubercle: a review of the literature. Muscle Ligaments Tendons J. 2012;1:153–60.

    Google Scholar 

  8. Sobel M, Levy ME, Bohne WHO. Congenital variations of the peroneus quartus muscle: an anatomic study. Foot Ankle Int. 1990;11:81–9.

    CAS  Google Scholar 

  9. Jerban S, Nazaran A, Cheng X, Carl M, Szeverenyi N, Du J, et al. Ultrashort echo time T2∗ values decrease in tendons with application of static tensile loads. J Biomech. 2017;61:160–7.

    PubMed  PubMed Central  Google Scholar 

  10. Zhang X, Pauel R, Deschamps K, Jonkers I, Vanwanseele B. Differences in foot muscle morphology and foot kinematics between symptomatic and asymptomatic pronated feet. Scand J Med Sci Sports. 2019;[Epub ahead of print].

    Google Scholar 

  11. Zhang X, Aeles J, Vanwanseele B. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet. Gait Posture. 2017;54:290–4.

    PubMed  Google Scholar 

  12. Angin S, Crofts G, Mickle KJ, Nester CJ. Ultrasound evaluation of foot muscles and plantar fascia in pes planus. Gait Posture. 2014;40:48–52.

    PubMed  Google Scholar 

  13. Ledoux WR, Shofer JB, Ahroni JH, Smith DG, Sangeorzan BJ, Boyko EJ. Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot Ankle Int. 2003;24:846–60.

    Google Scholar 

  14. Song J, Hillstrom HJ, Secord D, Levitt J. Foot type biomechanics. Comparisons of planus and rectus foot types. J Am Podiatr Med Assoc. 1996;1:16–23.

    Google Scholar 

  15. Ledoux WR, Hillstrom HJ. The distributed plantar vertical force of neutrally aligned and pes planus feet. Gait Posture. 2002;15:1–9.

    PubMed  Google Scholar 

  16. Hillstrom HJ, Song J, Kraszewski AP, Hafer JF, Mootanah R, Dufour AB, et al. Foot type biomechanics part 1: structure and function of the asymptomatic foot. Gait Posture. 2013;37:445–51.

    PubMed  Google Scholar 

  17. Kokubo T, Hashimoto T, Nagura T, Nakamura T, Suda Y, Matsumoto H, et al. Effect of the posterior tibial and peroneal longus on the mechanical properties of the foot arch. Foot Ankle Int. 2012;33:320–5.

    PubMed  Google Scholar 

  18. Dullaert K, Hagen J, Klos K, Gueorguiev B, Lenz M, Richards RG, et al. The influence of the peroneus longus muscle on the foot under axial loading: a CT evaluated dynamic cadaver model study. Clin Biomech. 2016;34:7–11.

    CAS  Google Scholar 

  19. Johnson CH, Christensen JC. Biomechanics of the first ray part I. the effects of peroneus longus function: a three-dimensional kinematic study on a cadaver model. J Foot Ankle Surg. 1999;38:313–21.

    CAS  PubMed  Google Scholar 

  20. Bohne WHO, Lee KT, Peterson MGE. Action of the peroneus longus tendon on the first metatarsal against metatarsus primus varus forces. Foot Ankle Int. 1997;18:510–2.

    CAS  PubMed  Google Scholar 

  21. Hicks HJ. The mechanics of the foot II. The plantar aponeurosis and the arch. J Anat. 1954;88:25–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Roukis TS, Scherer PR, Anderson CF. Position of the first ray and motion of the first metatarsophalangeal joint. J Am Podiatr Med Assoc. 1996;86:538–46.

    CAS  PubMed  Google Scholar 

  23. King DM, Toolan BC. Associated deformities and hypermobility in hallux valgus: an investigation with weightbearing radiographs. Foot Ankle Int. 2004;25:251–5.

    PubMed  Google Scholar 

  24. Cooper AJ, Clifford PF, Parikh VK, Steinmentz ND, Mizel MS. Instability of the first metatarsal-cuneiform joint: diagnosis and discussion of an independent pain generator in the foot. Foot Ankle Int. 2009;30:928–58.

    PubMed  Google Scholar 

  25. Olson SL, Ledoux WR, Ching RP, Sangeorzan BJ. Muscular imbalances resulting in a clawed hallux. Foot Ankle Int. 2003;6:477–85.

    Google Scholar 

  26. Vlahovic TC, Ribeiro CE, Lamm BM, Denmark JA, Walters RG, Talbert T, et al. A case of peroneal neuropathy-induced footdrop. Correlated and compensatory lower-extremity function. J Am Podiatr Med Assoc. 2000;90:411–20.

    CAS  PubMed  Google Scholar 

  27. Min BC, Chung CY, Park MS, Choi Y, Koo S, Jang S, et al. Dynamic first tarsometatarsal instability during gait evaluated by pedobarographic examination in patients with hallux valgus. Foot Ankle Int. 2019;[Epub ahead of print].

    Google Scholar 

  28. Dannanberg HJ. Gait style as an etiology to chronic postural pain. Part I. functional hallux limitus. J Am Podiatr Med Assoc. 1993;83:433–41.

    Google Scholar 

  29. Duchenne GB. Physiologie de mouvements: translated and edited to physiology of motion. Bailliere, Paris: Saunders WB; 1949. p. 205–439.

    Google Scholar 

  30. Bierman RA, Christensen JC, Johnson CH. Biomechanics of the first ray. Part III. Consequences of Lapidus arthrodesis on peroneus longus function: a three-dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg. 2001;40:125–31.

    CAS  PubMed  Google Scholar 

  31. Hintermann B, Nigg BM, Sommer C. Foot movement and tendon excursion: an in vitro study. Foot Ankle Int. 1994;15:386–95.

    CAS  PubMed  Google Scholar 

  32. Ziai P, Benca E, von Skrbensky G, Graf A, Wenzel F, Basad E, et al. The role of the peroneal tendons in passive stabilisation of the ankle joint: an in vitro study. Knee Surg Sports Traumatol Arthrosc. 2013;21:1404–8.

    PubMed  Google Scholar 

  33. Hunt AE, Smith RM. Mechanics and control of the flat versus normal foot during the stance phase of walking. Clin Biomech. 2004;19:391–7.

    Google Scholar 

  34. Root ML, Orien WP, Weed JH. Normal and abnormal function of the foot. Clin Biomech. 1997;2:46–5.

    Google Scholar 

  35. Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. J Foot Ankle Res. 2009;26:35.

    Google Scholar 

  36. Gray EG, Basmajian JV. Electromyography and cinematography of leg and foot (“normal” and flat) during walking. Anat Rec. 1968;161:1–15.

    CAS  PubMed  Google Scholar 

  37. Murley GS, Landorf KB, Menz HB. Do foot orthoses change lower limb muscle activity in flat-arched feet in a pattern observed in normal-arched feet? Clin Biomech. 2010;25:72–736.

    Google Scholar 

  38. Ludwig O, Kelm J, Fröhlich M. The influence of insoles with a peroneal pressure point on the electromyographic activity of tibialis anterior and peroneus longus during gait. J Foot Ankle Res. 2016;9:33.

    PubMed  PubMed Central  Google Scholar 

  39. Mündermann A, Wakeling JM, Nigg BM, Humble RN, Stefanyshyn DJ. Foot orthoses affect frequency components of muscle activity in the lower extremity. Gait Posture. 2006;23:295–302.

    PubMed  Google Scholar 

  40. Mitchell A, Dyson R, Hale T, Abraham C. Biomechanics of ankle instability. Part 1: Reaction time to simulated ankle sprain. Med Sci Sports Exerc. 2008a;40:1515–21.

    PubMed  Google Scholar 

  41. Mitchell A, Dyson R, Hale T, Abraham C. Biomechanics of ankle instability. Part 2: Postural sway-reaction time relationship. Med Sci Sports Exerc. 2008;40:1522–8.

    PubMed  Google Scholar 

  42. Potthast W, Lersch C, Segesser B, Koebke J, Bruggemann G-P. Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces. Clin Biomech. 2008;23:632–9.

    Google Scholar 

  43. Morales-Orcajo E, Souza TR, Bayod J, de Las Cases EB. Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex. Med Eng Phys. 2017;49:71–8.

    PubMed  Google Scholar 

  44. Wagner E, Wagner P, Radkievich R, Palma F, Guzmán-Venegas R. Biomechanical cadaveric evaluation of partial acute peroneal tendon tears. Foot Ankle Int. 2018;39:741–5.

    PubMed  Google Scholar 

  45. Heckman DS, Sudheer R, David P, Wapner KL, Parekh SD. Operative treatment for peroneal tendon disorders. J Bone Joint Surg. 2008;90:404–18.

    PubMed  Google Scholar 

  46. Jeng C, Thawait G, Kwon J. Relative strengths of the calf muscles based on MRI volume measurements. Foot Ankle Int. 2012;33:394–9.

    PubMed  Google Scholar 

  47. Pellegrini MJ, Glissons RR, Matsumoto T, Schiff A, Lavar L, Easley ME, et al. Effectiveness of allograft reconstruction vs tenodesis for irreplaceable peroneus brevis tears: a cadaveric model. Foot Ankle Int. 2016;37:803–8.

    PubMed  Google Scholar 

  48. Sherman TI, Koury K, Orapin J, Schon LC. Lateral transfer of the flexor digitorum longus for peroneal tendinopathy. Foot Ankle Int. 2019;40:1012–7.

    PubMed  Google Scholar 

  49. Seybold JD, Campbell JT, Jeng CL, Myerson MS. Anatomic comparison of latera transfer of the long flexors for concomitant peroneal tears. Foot Ankle Int. 2013;34:1718–23.

    PubMed  Google Scholar 

  50. Seybold JD, Campbell JT, Jeng CL, Short KW, Myerson MS. Outcome of lateral transfer of FHL or FDL for concomitant peroneal tendon tears. Foot Ankle Int. 2016;37:576–81.

    PubMed  Google Scholar 

  51. Koallis SL, Ferkel RD. Fibular grooving for recurrent peroneal tendon subluxation. Am J Sports Med. 1997;25:329–35.

    Google Scholar 

  52. Title CI, Jung H-G, Park BG, Schon LC. The peroneal groove deepening procedure: a biomechanical study of pressure reduction. Foot Ankle Int. 2005;26:442–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Rogerio Bitar MD for his expert cadaveric dissection (Fig. 2.2ab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morgan, O., Song, J., Hillstrom, R., Sobel, M., Hillstrom, H.J. (2020). Biomechanics of the Peroneal Tendons. In: Sobel, M. (eds) The Peroneal Tendons. Springer, Cham. https://doi.org/10.1007/978-3-030-46646-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46646-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46645-9

  • Online ISBN: 978-3-030-46646-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics