Skip to main content

Superradiance in Black-Hole Physics

  • Chapter
  • First Online:
Superradiance

Part of the book series: Lecture Notes in Physics ((LNP,volume 971))

  • 1142 Accesses

Abstract

As discussed in the previous section, superradiance requires dissipation. The latter can emerge in various forms, e.g. viscosity, friction, turbulence, radiative cooling, etc. All these forms of dissipation are associated with some medium or some matter field that provides the arena for superradiance. It is thus truly remarkable that—when spacetime is curved—superradiance can also occur in vacuum, even at the classical level. In this section we discuss in detail BH superradiance, which is the main topic of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also require the spacetime to be invariant under the “circularity condition,” t →−t and φ →−φ, which implies g t𝜗 = g  = g r𝜗 = g  = 0 [6]. While the circularity condition follows from Einstein and Maxwell equations in electrovacuum, it might not hold true in modified gravities or for exotic matter fields.

  2. 2.

    This possibility was at some stage considered of potential interest for the physics of jets emitted by quasars.

  3. 3.

    Interestingly, in the case of a naked singularity large-curvature regions become accessible to outside observers and g tt can be arbitrarily large. This suggests that the Penrose effects around spinning naked singularities can be very efficient. It is also possible that rotating wormholes are prone to efficient Penrose-like processes, although to the best of our knowledge a detailed investigation has not been performed.

  4. 4.

    A special feature of vacuum stationary GR solutions is their axisymmetry [43]. This simplifies considerably the treatment of superradiant instabilities in GR, as it excludes mixing between modes with different azimuthal number m.

  5. 5.

    As we shall discuss, this condition holds for scalar perturbations of spinning and charged BHs, but it does not hold in other cases of interest, for example, for EM and gravitational perturbations satisfying the Teukolsky equation for a Kerr BH. In the latter cases, it is convenient to make a change of variables by introducing the Detweiler’s function, which can be chosen such that the effective potential is real [44, 45].

  6. 6.

    Note that a planar tensor wave along γ = 0 in Cartesian coordinates will have a sin 2φ modulation when transformed to spherical coordinates, in which the multipolar decomposition is performed. This explains why Eq. (3.114) depends only on |m| = 2 and on a sum over all multipolar indices l ≤ 2. Likewise, an EM wave along γ = 0 would be modulated by \(\sin \varphi \) and its cross-section would only depend on |m| = 1, whereas the cross-section (3.111) for a scalar wave along γ = 0 only depends on m = 0.

  7. 7.

    There are no gravitational degrees of freedom in less than 4 dimensions, and a BH solution only exists for a negative cosmological constant, the so-called BTZ solution [127]. This solution has some similarities with the Kerr-AdS metric and, as we shall discuss in Sect. 3.12, superradiance does not occur when reflective boundary conditions at infinity are imposed [128].

  8. 8.

    It would be interesting to understand the large amplification of the superradiance energy in terms of violation of some energy condition due to the effective coupling that appears in scalar–tensor theories.

  9. 9.

    The geometry used in the original Kerr/CFT duality is the so-called near-horizon extreme Kerr “NHEK” geometry found by Bardeen and Horowitz [181] which is not asymptotically flat but resembles AdS3. That this geometry could have a dual CFT description was first pointed out in Ref. [181].

  10. 10.

    This example was suggested to us by Luis Lehner and Frans Pretorius.

  11. 11.

    We follow the terminology of Dias, Emparan and Maccarrone who, in a completely different context, arrived at conclusions very similar to ours, see Section 2.4 in Ref. [177].

  12. 12.

    This simple proof was suggested to us by Roberto Emparan.

  13. 13.

    The only exception to this rule concerns BHs surrounded by matter coupled to scalar fields, where the amplification factors can become unbounded (see Sect. 3.13). Because the laws of BH mechanics will be different, these fall outside the scope of this discussion.

  14. 14.

    We thank Shahar Hod for drawing our attention to this point.

References

  1. K.S. Thorne, R. Price, D. Macdonald, Black Holes: The Membrane Paradigm (Yale University Press, London, 1986)

    MATH  Google Scholar 

  2. E.T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash, et al., Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    ADS  MathSciNet  Google Scholar 

  3. D. Robinson, The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  4. D.L. Wiltshire, M. Visser, S.M. Scott, The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  5. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)

    ADS  Google Scholar 

  6. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983)

    MATH  Google Scholar 

  7. V. Cardoso, P. Pani, Tidal acceleration of black holes and superradiance. Class. Quant. Grav. 30, 045011 (2013). arXiv:1205.3184 [gr-qc]

    Google Scholar 

  8. J. Bekenstein, Extraction of energy and charge from a black hole. Phys. Rev. D7, 949–953 (1973)

    ADS  Google Scholar 

  9. R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]

    Google Scholar 

  10. W. Unruh, “Separability of the neutrino equations in a Kerr background. Phys. Rev. Lett. 31 1265–1267 (1973)

    ADS  Google Scholar 

  11. R.M. Wald, Black hole entropy is the Noether charge. Phys. Rev. D48, 3427–3431 (1993). arXiv:gr-qc/9307038 [gr-qc]

    Google Scholar 

  12. V. Iyer, R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D50, 846–864 (1994). arXiv:gr-qc/9403028 [gr-qc]

    Google Scholar 

  13. T. Tachizawa, K.-I. Maeda, Superradiance in the Kerr-de Sitter space-time. Phys. Lett. A 172, 325–330 (1993)

    ADS  Google Scholar 

  14. J. Natario, L. Queimada, R. Vicente, Test fields cannot destroy extremal black holes. Class. Quant. Grav. 33(17), 175002 (2016). arXiv:1601.06809 [gr-qc]

    Google Scholar 

  15. R. Penrose, Nuovo Cimento. J. Serie 1, 252 (1969)

    Google Scholar 

  16. G. Contopoulos, Orbits through the ergosphere of a Kerr black hole. Gen. Relativ. Gravit. 16(1), 43–70 (1984). http://dx.doi.org/10.1007/BF00764017

    ADS  MathSciNet  MATH  Google Scholar 

  17. S. Kinoshita, T. Igata, K. Tanabe, Energy extraction from Kerr black holes by rigidly rotating strings. Phys. Rev. D94(12), 124039 (2016). arXiv:1610.08006 [gr-qc]

    Google Scholar 

  18. R.M. Wald, Energy limits on the Penrose process. Astrophys. J. 191, 231 (1974)

    ADS  Google Scholar 

  19. M. Bhat, S. Dhurandhar, N. Dadhich, Energetics of the Kerr-Newman black hole by the Penrose process. J. Astrophys. Astron. 6, 85–100 (1985)

    ADS  Google Scholar 

  20. S. Wagh, S. Dhurandhar, N. Dadhich, Revival of penrose process for astrophysical applications. Astrophys. J. 290(12), 1018 (1985)

    Google Scholar 

  21. S.M. Wagh, S.V. Dhurandhar, N. Dadhich, Revival of the Penrose process for astrophysical applications: erratum. Astrophys. J. 301, 1018 (1986)

    ADS  Google Scholar 

  22. R. Vicente, V. Cardoso, J.C. Lopes, Penrose process, superradiance, and ergoregion instabilities. Phys. Rev. D97(8), 084032 (2018). arXiv:1803.08060 [gr-qc]

    Google Scholar 

  23. E. Teo, Rotating traversable wormholes. Phys. Rev. D58, 024014 (1998). arXiv:gr-qc/9803098 [gr-qc]

    Google Scholar 

  24. A. Abdujabbarov, B. Ahmedov, B. Ahmedov, Energy extraction and particle acceleration around rotating black hole in Horava-Lifshitz gravity. Phys. Rev. D84, 044044 (2011). arXiv:1107.5389 [astro-ph.SR]

    Google Scholar 

  25. A. Abdujabbarov, B. Ahmedov, S. Shaymatov, A. Rakhmatov, Penrose process in Kerr-Taub-NUT spacetime. Astrophys. Space Sci. 334, 237–241 (2011). arXiv:1105.1910 [astro-ph.SR]

    Google Scholar 

  26. S. Chen, J. Jing, Gravitational field of a slowly rotating black hole with a phantom global monopole. Class. Quant. Grav. 30, 175012 (2013). arXiv:1301.1440 [gr-qc]

    Google Scholar 

  27. C. Ganguly, S. SenGupta, Penrose process in a charged axion-dilaton coupled black hole. Eur. Phys. J. C76(4), 213 (2016). arXiv:1401.6826 [hep-th]

    Google Scholar 

  28. C. Liu, S. Chen, J. Jing, Rotating non-Kerr black hole and energy extraction. Astrophys. J. 751, 148 (2012). arXiv:1207.0993 [gr-qc]

    Google Scholar 

  29. M. Nozawa, K.-I. Maeda, Energy extraction from higher dimensional black holes and black rings. Phys. Rev. D71, 084028 (2005). arXiv:hep-th/0502166 [hep-th]

    Google Scholar 

  30. K. Prabhu, N. Dadhich, Energetics of a rotating charged black hole in 5-dimensional gauged supergravity. Phys. Rev. D81, 024011 (2010). arXiv:0902.3079 [hep-th]

    Google Scholar 

  31. S.G. Ghosh, P. Sheoran, Higher dimensional non-Kerr black hole and energy extraction. Phys. Rev. D89, 024023 (2014). arXiv:1309.5519 [gr-qc]

    Google Scholar 

  32. S. Parthasarathy, S.M. Wagh, S.V. Dhurandhar, N. Dadhich, High efficiency of the Penrose process of energy extraction from rotating black holes immersed in electromagnetic fields. Astrophys. J. 307, 38–46 (1986)

    ADS  Google Scholar 

  33. S.M. Wagh, N. Dadhich, The energetics of black holes in electromagnetic fields by the Penrose process. Phys. Rept. 183(4), 137–192 (1989)

    ADS  MathSciNet  Google Scholar 

  34. T. Piran, J. Shaham, J. Katz, High efficiency of the penrose mechanism for particle collisions. Astrophys. J. 196, L107 (1975)

    ADS  Google Scholar 

  35. T. Piran, J. Shaham, Upper bounds on collisional penrose processes near rotating black hole horizons. Phys. Rev. D16, 1615–1635 (1977)

    ADS  Google Scholar 

  36. T. Harada, H. Nemoto, U. Miyamoto, Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole. Phys. Rev. D86, 024027 (2012). arXiv:1205.7088 [gr-qc]

    Google Scholar 

  37. M. Bejger, T. Piran, M. Abramowicz, F. Hakanson, Collisional Penrose process near the horizon of extreme Kerr black holes. Phys. Rev. Lett. 109, 121101 (2012). arXiv:1205.4350 [astro-ph.HE]

    Google Scholar 

  38. O. Zaslavskii, On energetics of particle collisions near black holes: BSW effect versus Penrose process. Phys. Rev. D86, 084030 (2012). arXiv:1205.4410 [gr-qc]

    Google Scholar 

  39. J.D. Schnittman, Revised upper limit to energy extraction from a Kerr black hole. Phys. Rev. Lett. 113, 261102 (2014). arXiv:1410.6446 [astro-ph.HE]

    Google Scholar 

  40. E. Berti, R. Brito, V. Cardoso, Ultrahigh-energy debris from the collisional Penrose process. Phys. Rev. Lett. 114(25), 251103 (2015). arXiv:1410.8534 [gr-qc]

    Google Scholar 

  41. E. Leiderschneider, T. Piran, Super-Penrose collisions are inefficient - a comment on: black hole fireworks: ultra-high-energy debris from super-Penrose collisions (2015). arXiv:1501.01984 [gr-qc]

    Google Scholar 

  42. K.-I. Maeda, K. Okabayashi, H. Okawa, Maximal efficiency of the collisional Penrose process with spinning particles. Phys. Rev. D98(6), 064027 (2018). arXiv:1804.07264 [gr-qc]

    Google Scholar 

  43. S. Hawking, Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    ADS  MathSciNet  Google Scholar 

  44. S. Detweiler, On resonant oscillations of a rapidly rotating black hole. Proc. R. Soc. Lond. A 352, 381–395 (1977)

    ADS  Google Scholar 

  45. E. Maggio, V. Cardoso, S.R. Dolan, P. Pani, Ergoregion instability of exotic compact objects: electromagnetic and gravitational perturbations and the role of absorption. Phys. Rev. D99(6), 064007 (2019). arXiv:1807.08840 [gr-qc]

    Google Scholar 

  46. S. Teukolsky, W. Press, Perturbations of a rotating black hole. III - interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 193, 443–461 (1974)

    Google Scholar 

  47. Y.B. Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz. 14, 270 (1971). [JETP Lett. 14, 180 (1971)]

    Google Scholar 

  48. Y.B. Zel’dovich, Zh. Eksp. Teor. Fiz 62, 2076 (1972). [Sov.Phys. JETP 35, 1085 (1972)]

    Google Scholar 

  49. M. Richartz, S. Weinfurtner, A. Penner, W. Unruh, General universal superradiant scattering. Phys. Rev. D80, 124016 (2009). arXiv:0909.2317 [gr-qc]

    Google Scholar 

  50. G. Eskin, Superradiance initiated inside the ergoregion. Rev. Math. Phys. 28(10), 1650025 (2016). arXiv:1509.03197 [math-ph]

    Google Scholar 

  51. L.D. Menza, J.-P. Nicolas, Superradiance on the Reissner-Nordstrom metric. Class. Quant. Grav. 32(14), 145013 (2015). arXiv:1411.3988 [math-ph]

    Google Scholar 

  52. M. Richartz, A. Saa, Challenging the weak cosmic censorship conjecture with charged quantum particles. Phys. Rev. D84, 104021 (2011). arXiv:1109.3364 [gr-qc]

    Google Scholar 

  53. C.L. Benone, L.C.B. Crispino, Superradiance in static black hole spacetimes. Phys. Rev. D93(2), 024028 (2016). arXiv:1511.02634 [gr-qc]

    Google Scholar 

  54. C.L. Benone, L.C.B. Crispino, Massive and charged scalar field in Kerr-Newman spacetime: absorption and superradiance. Phys. Rev. D99(4), 044009 (2019). arXiv:1901.05592 [gr-qc]

    Google Scholar 

  55. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon. Phys.Rev. D78, 065034 (2008). arXiv:0801.2977 [hep-th]

    Google Scholar 

  56. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]

    Google Scholar 

  57. O. Baake, O. Rinne, Superradiance of a charged scalar field coupled to the Einstein-Maxwell equations. Phys. Rev. D94(12), 124016 (2016). arXiv:1610.08352 [gr-qc]

    Google Scholar 

  58. S.A. Teukolsky, Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29, 1114–1118 (1972)

    ADS  Google Scholar 

  59. S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973)

    Google Scholar 

  60. W.H. Press, S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649–674 (1973)

    Google Scholar 

  61. B. Carter, Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    ADS  MATH  Google Scholar 

  62. B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280 (1968)

    ADS  MathSciNet  MATH  Google Scholar 

  63. D. Brill, P. Chrzanowski, C. Martin Pereira, E. Fackerell, J. Ipser, Solution of the scalar wave equation in a Kerr background by separation of variables. Phys. Rev. D5, 1913–1915 (1972)

    ADS  MathSciNet  Google Scholar 

  64. S.A. Teukolsky, The Kerr metric. Class. Quant. Grav. 32(12), 124006 (2015). arXiv:1410.2130 [gr-qc]

    Google Scholar 

  65. J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F. Rohrlich, E.C.G. Sudarshan, Spin s spherical harmonics and edth. J. Math. Phys. 8(11), 2155–2161 (1967). http://scitation.aip.org/content/aip/journal/jmp/8/11/10.1063/1.1705135

    ADS  MATH  Google Scholar 

  66. E. Berti, V. Cardoso, M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions. Phys. Rev. D73, 024013 (2006). arXiv:gr-qc/0511111 [gr-qc]

    Google Scholar 

  67. E. Newman, R. Penrose, An Approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  68. A.A. Starobinskij, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 65, 3–11 (1973)

    ADS  Google Scholar 

  69. A.A. Starobinskij, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Sov. Phys.-JETP 38, 1–5 (1973)

    ADS  Google Scholar 

  70. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

    Google Scholar 

  71. C.W. Misner, K. Thorne, J. Wheeler, Gravitation (Freeman, New York, 1974)

    Google Scholar 

  72. S. Hawking, J. Hartle, Energy and angular momentum flow into a black hole. Commun. Math. Phys. 27, 283–290 (1972)

    ADS  MathSciNet  Google Scholar 

  73. S. Chandrasekhar, The solution of Dirac’s equation in Kerr geometry. R. Soc. Lond. Proc. A 349, 571–575 (1976)

    ADS  MathSciNet  Google Scholar 

  74. D.N. Page, Dirac equation around a charged, rotating black hole. Phys. Rev. D 14, 1509–1510 (1976)

    ADS  Google Scholar 

  75. C.H. Lee, Massive spin-1/2 wave around a Kerr-Newman black hole. Phys. Lett. B 68, 152–156 (1977)

    ADS  Google Scholar 

  76. B.R. Iyer, A. Kumar, Note on the absence of massive fermion superradiance from a Kerr black hole. Phys. Rev. 18, 4799–4801 (1978)

    ADS  Google Scholar 

  77. M. Martellini, A. Treves, Absence of superradiance of a Dirac field in a Kerr background. Phys. Rev. D15, 3060–3061 (1977)

    ADS  Google Scholar 

  78. S. Hawking, Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    ADS  Google Scholar 

  79. S.M. Wagh, N. Dadhich, Absence of super-radiance of the Dirac particles in the Kerr-Newman geometry and the weak positive-energy condition. Phys. Rev. D32, 1863–1865 (1985)

    ADS  MathSciNet  Google Scholar 

  80. A. Starobinski, Amplification of waves during reflection from a rotating black hole. Zh. Eksp. Teor. Fiz. 64, 48 (1973). (Sov. Phys. - JETP, 37, 28, 1973)

    Google Scholar 

  81. A.A. Starobinski, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Zh. Eksp. Teor. Fiz. 65, 3 (1973). (Sov. Phys. - JETP, 38, 1, 1973)

    Google Scholar 

  82. V. Cardoso, A note on the resonant frequencies of rapidly rotating black holes. Phys. Rev. D70, 127502 (2004). arXiv:gr-qc/0411048 [gr-qc]

    Google Scholar 

  83. S.L. Detweiler, Black holes and gravitational waves. III. The resonant frequencies of rotating holes. Astrophys. J. 239, 292–295 (1980)

    Google Scholar 

  84. N. Andersson, K. Glampedakis, A superradiance resonance cavity outside rapidly rotating black holes. Phys. Rev. Lett. 84, 4537–4540 (2000). arXiv:gr-qc/9909050 [gr-qc]

    Google Scholar 

  85. H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti, et al., Branching of quasinormal modes for nearly extremal Kerr black holes. Phys. Rev. D87, 041502 (2013). arXiv:1212.3271 [gr-qc]

    Google Scholar 

  86. S. Hod, Stationary resonances of rapidly-rotating Kerr black holes. Eur. Phys. J. C73, 2378 (2013). arXiv:1311.5298 [gr-qc]

    Google Scholar 

  87. S. Hod, Stationary scalar clouds around rotating black holes. Phys. Rev. D86, 104026 (2012). arXiv:1211.3202 [gr-qc]

    Google Scholar 

  88. S. Hod, Resonance spectrum of near-extremal Kerr black holes in the eikonal limit. Phys. Lett. B715, 348–351 (2012). arXiv:1207.5282 [gr-qc]

    Google Scholar 

  89. S. Hod, Quasinormal resonances of a charged scalar field in a charged Reissner-Nordstrom black-hole spacetime: a WKB analysis. Phys. Lett. B710, 349–351 (2012). arXiv:1205.5087 [gr-qc]

    Google Scholar 

  90. S. Hod, Algebraically special resonances of the Kerr-black-hole-mirror bomb. Phys. Rev. D88(12), 124007 (2013). arXiv:1405.1045 [gr-qc]

    Google Scholar 

  91. W. Unruh, Absorption cross-section of small black holes. Phys. Rev. D14, 3251–3259 (1976)

    ADS  Google Scholar 

  92. C.F. Macedo, L.C. Leite, E.S. Oliveira, S.R. Dolan, L.C. Crispino, Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D88(6), 064033 (2013). arXiv:1308.0018 [gr-qc]

    Google Scholar 

  93. L.C.S. Leite, S. Dolan, C.B. Crispino, Luís, Absorption of electromagnetic plane waves by rotating black holes. Phys. Rev. D98(2), 024046 (2018). arXiv:1805.07840 [gr-qc]

    Google Scholar 

  94. J.G. Rosa, Testing black hole superradiance with pulsar companions. Phys. Lett. B749, 226–230 (2015). arXiv:1501.07605 [gr-qc]

    Google Scholar 

  95. J.G. Rosa, Superradiance in the sky. Phys. Rev. D95(6), 064017 (2017). arXiv:1612.01826 [gr-qc]

    Google Scholar 

  96. P. Chrzanowski, R. Matzner, V. Sandberg, M. Ryan, Zero mass plane waves in nonzero gravitational backgrounds. Phys. Rev. D14, 317–326 (1976)

    ADS  MathSciNet  Google Scholar 

  97. R. Matzner, M. Ryan, Low frequency limit of gravitational scattering. Phys. Rev. D16, 1636–1642 (1977)

    ADS  MathSciNet  Google Scholar 

  98. R.A. Matzner, M.P. Ryan, Jr., Scattering of gravitational radiation from vacuum black holes. Astrophys. J. 36, 451–481 (1978)

    ADS  Google Scholar 

  99. J.A.H. Futterman, F.A. Handler, R.A. Matzner, Scattering from Black Holes (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  100. S.R. Dolan, Scattering and absorption of gravitational plane waves by rotating black holes. Class. Quant. Grav. 25, 235002 (2008). arXiv:0801.3805 [gr-qc]

    Google Scholar 

  101. E.S. Oliveira, S.R. Dolan, L.C. Crispino, Absorption of planar waves in a draining bathtub. Phys. Rev. D81, 124013 (2010)

    ADS  Google Scholar 

  102. S. Hod, Marginally stable resonant modes of the polytropic hydrodynamic vortex. Phys. Lett. B774, 368 (2017). arXiv:1711.02105 [gr-qc]

    Google Scholar 

  103. W.E. East, F.M. Ramazanoglu, F. Pretorius, Black hole superradiance in dynamical spacetime. Phys. Rev. D89, 061503 (2014). arXiv:1312.4529 [gr-qc]

    Google Scholar 

  104. M. Richartz, A. Saa, Superradiance without event horizons in general relativity. Phys. Rev. D88, 044008 (2013). arXiv:1306.3137 [gr-qc]

    Google Scholar 

  105. V. Cardoso, R. Brito, J.L. Rosa, Superradiance in stars. Phys. Rev. D91(12), 124026 (2015). arXiv:1505.05509 [gr-qc]

    Google Scholar 

  106. K. Glampedakis, S.J. Kapadia, D. Kennefick, Superradiance-tidal friction correspondence. Phys. Rev. D89(2), 024007 (2014). arXiv:1312.1912 [gr-qc]

    Google Scholar 

  107. Y.B. Zel’dovich, JETP Lett. 14, 180 (1971)

    ADS  Google Scholar 

  108. D.E. Kaplan, S. Rajendran, P. Riggins, Particle probes with superradiant pulsars (2019). arXiv:1908.10440 [hep-ph]

    Google Scholar 

  109. V. Cardoso, P. Pani, T.-T. Yu, Superradiance in rotating stars and pulsar-timing constraints on dark photons. Phys. Rev. D95(12), 124056 (2017). arXiv:1704.06151 [gr-qc]

    Google Scholar 

  110. J.D. Bekenstein, M. Schiffer, The many faces of superradiance. Phys. Rev. D58, 064014 (1998). arXiv:gr-qc/9803033 [gr-qc]

    Google Scholar 

  111. F.V. Day, J.I. McDonald, Axion superradiance in rotating neutron stars. J. Cosmol. Astropart. Phys. 1910(10), 051 (2019). arXiv:1904.08341 [hep-ph]

    Google Scholar 

  112. C. Barcelo, S. Liberati, M. Visser, Analogue gravity. Living Rev. Rel. 8, 12 (2005). arXiv:gr-qc/0505065 [gr-qc]

    Google Scholar 

  113. E. Berti, V. Cardoso, J.P. Lemos, Quasinormal modes and classical wave propagation in analogue black holes. Phys. Rev. D70, 124006 (2004). arXiv:gr-qc/0408099 [gr-qc]

    Google Scholar 

  114. C. Cherubini, F. Federici, S. Succi, M. Tosi, Excised acoustic black holes: the scattering problem in the time domain. Phys. Rev. D72, 084016 (2005). arXiv:gr-qc/0504048 [gr-qc]

    Google Scholar 

  115. S. Lepe, J. Saavedra, Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes. Phys. Lett. B617 (2005) 174–181. arXiv:gr-qc/0410074 [gr-qc]

    Google Scholar 

  116. K. Choy, T. Kruk, M. Carrington, T. Fugleberg, J. Zahn, et al., Energy flow in acoustic black holes. Phys. Rev. D73, 104011 (2006). arXiv:gr-qc/0505163 [gr-qc]

    Google Scholar 

  117. M. Richartz, A. Prain, S. Liberati, S. Weinfurtner, Rotating black holes in a draining bathtub: superradiant scattering of gravity waves (2014). arXiv:1411.1662 [gr-qc]

    Google Scholar 

  118. F. Federici, C. Cherubini, S. Succi, M. Tosi, Superradiance from BEC vortices: a numerical study. Phys. Rev. A73, 033604 (2006). arXiv:gr-qc/0503089 [gr-qc]

    Google Scholar 

  119. N. Ghazanfari, O.E. Mustecaplioglu, Acoustic superradiance from an optical-superradiance-induced vortex in a Bose-Einstein condensate. Phys. Rev. A89, 043619 (2014). arXiv:1401.1077 [cond-mat.quant-gas]

    Google Scholar 

  120. S.L. Liebling, C. Palenzuela, Dynamical boson stars. Living Rev. Rel. 15, 6 (2012). arXiv:1202.5809 [gr-qc]

    Google Scholar 

  121. F. Kuhnel, C. Rampf, Astrophysical Bose-Einstein condensates and superradiance. Phys. Rev. D90, 103526 (2014). arXiv:1408.0790 [gr-qc]

    Google Scholar 

  122. T. Frisch, Y. Pomeau, S. Rica, Transition to dissipation in a model of superflow. Phys. Rev. Lett. 69, 1644–1647 (1992). https://link.aps.org/doi/10.1103/PhysRevLett.69.1644

    ADS  Google Scholar 

  123. D. Vocke, T. Roger, F. Marino, E.M. Wright, I. Carusotto, M. Clerici, D. Faccio, Experimental characterization of nonlocal photon fluids. Optica 2(5), 484–490 (2015). http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-5-484

    ADS  Google Scholar 

  124. F. Marino, M. Ciszak, A. Ortolan, Acoustic superradiance from optical vortices in self-defocusing cavities. Phys. Rev. A 80, 065802 (2009). https://link.aps.org/doi/10.1103/PhysRevA.80.065802

    ADS  Google Scholar 

  125. A. Prain, C. Maitland, D. Faccio, F. Marino, Superradiant scattering in fluids of light. Phys. Rev. D100(2), 024037 (2019). arXiv:1904.00684 [gr-qc]

    Google Scholar 

  126. T. Torres, S. Patrick, A. Coutant, M. Richartz, E. W. Tedford, S. Weinfurtner, Observation of superradiance in a vortex flow. Nat. Phys. 13, 833–836 (2017). arXiv:1612.06180 [gr-qc]

    Google Scholar 

  127. M. Banados, C. Teitelboim, J. Zanelli, The Black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099 [hep-th]

    Google Scholar 

  128. L. Ortiz, No superradiance for the scalar field in the BTZ black hole with reflexive boundary conditions. Phys. Rev. D86, 047703 (2012). arXiv:1110.2555 [hep-th]

    Google Scholar 

  129. R. Emparan, H.S. Reall, Black holes in higher dimensions. Living Rev. Rel. 11, 6 (2008). arXiv:0801.3471 [hep-th]

    Google Scholar 

  130. S. Hollands, A. Ishibashi, R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699–722 (2007). arXiv:gr-qc/0605106 [gr-qc]

    Google Scholar 

  131. V.P. Frolov, D. Stojkovic, Quantum radiation from a five-dimensional rotating black hole. Phys. Rev. D67, 084004 (2003). arXiv:gr-qc/0211055 [gr-qc]

    Google Scholar 

  132. E. Jung, S. Kim, D. Park, Condition for superradiance in higher-dimensional rotating black holes. Phys. Lett. B615, 273–276 (2005). arXiv:hep-th/0503163 [hep-th]

    Google Scholar 

  133. E. Jung, S. Kim, D. Park, Condition for the superradiance modes in higher-dimensional rotating black holes with multiple angular momentum parameters. Phys. Lett. B619, 347–351 (2005). arXiv:hep-th/0504139 [hep-th]

    Google Scholar 

  134. H. Kodama, Superradiance and instability of black holes. Prog. Theor. Phys. Suppl. 172, 11–20 (2008). arXiv:0711.4184 [hep-th]

    Google Scholar 

  135. R. Brito, Dynamics around black holes: radiation emission and tidal effects (2012). arXiv:1211.1679 [gr-qc]

    Google Scholar 

  136. S. Creek, O. Efthimiou, P. Kanti, K. Tamvakis, Scalar emission in the bulk in a rotating black hole background. Phys. Lett. B656, 102–111 (2007). arXiv:0709.0241 [hep-th]

    Google Scholar 

  137. M. Casals, S. Dolan, P. Kanti, E. Winstanley, Bulk emission of scalars by a rotating black hole. J. High Energy Phys. 0806, 071 (2008). arXiv:0801.4910 [hep-th]

    Google Scholar 

  138. E. Jung, D. Park, Bulk versus brane in the absorption and emission: 5-D rotating black hole case. Nucl. Phys. B731, 171–187 (2005). arXiv:hep-th/0506204 [hep-th]

    Google Scholar 

  139. C. Harris, P. Kanti, Hawking radiation from a (4+n)-dimensional rotating black hole. Phys. Lett. B633, 106–110 (2006). arXiv:hep-th/0503010 [hep-th]

    Google Scholar 

  140. D. Ida, K.-Y. Oda, S.C. Park, Rotating black holes at future colliders. II. Anisotropic scalar field emission. Phys. Rev. D71, 124039 (2005). arXiv:hep-th/0503052 [hep-th]

    Google Scholar 

  141. S. Creek, O. Efthimiou, P. Kanti, K. Tamvakis, Greybody factors for brane scalar fields in a rotating black-hole background. Phys. Rev. D75, 084043 (2007). arXiv:hep-th/0701288 [hep-th]

    Google Scholar 

  142. M. Casals, P. Kanti, E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole. II. Spin-1 particles. J. High Energy Phys. 0602, 051 (2006). arXiv:hep-th/0511163 [hep-th]

    Google Scholar 

  143. R. Brito, V. Cardoso, P. Pani, Tidal effects around higher-dimensional black holes. Phys. Rev. D86, 024032 (2012). arXiv:1207.0504 [gr-qc]

    Google Scholar 

  144. E. Poisson, M. Sasaki, Gravitational radiation from a particle in circular orbit around a black hole. 5: black hole absorption and tail corrections. Phys. Rev. D51, 5753–5767 (1995). arXiv:gr-qc/9412027 [gr-qc]

    Google Scholar 

  145. V. Georgescu, C. Gerard, D. Hafner, Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter Kerr metric (2014). arXiv:1405.5304 [math.AP]

    Google Scholar 

  146. Z. Zhu, S.-J. Zhang, C. Pellicer, B. Wang, E. Abdalla, Stability of Reissner-Nordstrom black hole in de Sitter background under charged scalar perturbation. Phys. Rev. D90(4), 044042 (2014). arXiv:1405.4931 [hep-th]

    Google Scholar 

  147. R. Konoplya, A. Zhidenko, Charged scalar field instability between the event and cosmological horizons. Phys. Rev. D90, 064048 (2014). arXiv:1406.0019 [hep-th]

    Google Scholar 

  148. A. Ishibashi, R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. III. Anti-de Sitter space-time. Class. Quant. Grav. 21, 2981–3014 (2004). arXiv:hep-th/0402184 [hep-th]

    Google Scholar 

  149. E. Winstanley, On classical superradiance in Kerr-Newman - anti-de Sitter black holes. Phys. Rev. D64, 104010 (2001). arXiv:gr-qc/0106032 [gr-qc]

    Google Scholar 

  150. O.J. Dias, J.E. Santos, Boundary conditions for Kerr-AdS perturbations. J. High Energy Phys. 1310, 156 (2013). arXiv:1302.1580 [hep-th]

    Google Scholar 

  151. V. Cardoso, O.J. Dias, G.S. Hartnett, L. Lehner, J.E. Santos, Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS. J. High Energy Phys. 1404, 183 (2014). arXiv:1312.5323 [hep-th]

    Google Scholar 

  152. R. Jorge, E.S. de Oliveira, J.V. Rocha, Greybody factors for rotating black holes in higher dimensions. Class. Quant. Grav. 32(6), 065008 (2015). arXiv:1410.4590 [gr-qc]

    Google Scholar 

  153. N. Yunes, X. Siemens, Gravitational-wave tests of general relativity with ground-based detectors and pulsar timing-arrays. Living Rev. Rel. 16, 9 (2013). arXiv:1304.3473 [gr-qc]

    Google Scholar 

  154. E. Barausse, V. Cardoso, P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?. Phys. Rev. D89, 104059 (2014). arXiv:1404.7149 [gr-qc]

    Google Scholar 

  155. E. Berti, et al., Testing general relativity with present and future astrophysical observations. Class. Quant. Grav. 32, 243001 (2015). arXiv:1501.07274 [gr-qc]

    Google Scholar 

  156. P. Pani, C.F. Macedo, L.C. Crispino, V. Cardoso, Slowly rotating black holes in alternative theories of gravity. Phys. Rev. D84, 087501 (2011). arXiv:1109.3996 [gr-qc]

    Google Scholar 

  157. B. Kleihaus, J. Kunz, E. Radu, Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory. Phys. Rev. Lett. 106, 151104 (2011). arXiv:1101.2868 [gr-qc]

    Google Scholar 

  158. D. Psaltis, D. Perrodin, K.R. Dienes, I. Mocioiu, Kerr black holes are not unique to general relativity. Phys. Rev. Lett. 100, 091101 (2008). arXiv:0710.4564 [astro-ph]

    Google Scholar 

  159. Y.S. Myung, Instability of rotating black hole in a limited form of f(R) gravity. Phys. Rev. D84, 024048 (2011). arXiv:1104.3180 [gr-qc]

    Google Scholar 

  160. Y.S. Myung, Instability of a Kerr black hole in f(R) gravity. Phys. Rev. D88(10), 104017 (2013). arXiv:1309.3346 [gr-qc]

    Google Scholar 

  161. M.F. Wondrak, P. Nicolini, J.W. Moffat, Superradiance in modified gravity (MOG). J. Cosmol. Astropart. Phys. 1812(12), 021 (2018). arXiv:1809.07509 [gr-qc]

    Google Scholar 

  162. V.P. Frolov, A. Zelnikov, Superradiance in a ghost-free scalar theory. Phys. Rev. D98(8), 084035 (2018). arXiv:1809.00417 [hep-th]

    Google Scholar 

  163. T. Johannsen, D. Psaltis, A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D83, 124015 (2011). arXiv:1105.3191 [gr-qc]

    Google Scholar 

  164. V. Cardoso, P. Pani, J. Rico, On generic parametrizations of spinning black-hole geometries. Phys. Rev. D89, 064007 (2014). arXiv:1401.0528 [gr-qc]

    Google Scholar 

  165. D. Bini, C. Cherubini, R.T. Jantzen, B. Mashhoon, Massless field perturbations and gravitomagnetism in the Kerr-Taub-NUT space-time. Phys. Rev. D67, 084013 (2003). arXiv:gr-qc/0301080 [gr-qc]

    Google Scholar 

  166. D. Bini, C. Cherubini, A. Geralico, Massless field perturbations of the spinning C metric. J. Math. Phys. 49, 062502 (2008). arXiv:1408.4593 [gr-qc]

    Google Scholar 

  167. M. Khodadi, A. Talebian, H. Firouzjahi, Black hole superradiance in f(R) gravities. arXiv:2002.10496 [gr-qc]

    Google Scholar 

  168. J.-I. Koga, K.I. Maeda, Superradiance around rotating dilatonic black holes. Phys. Lett. B340 29–34 (1994). http://dx.doi.org/10.1016/0370-2693(94)91293-9

    ADS  MathSciNet  Google Scholar 

  169. V. Cardoso, I.P. Carucci, P. Pani, T.P. Sotiriou, Black holes with surrounding matter in scalar-tensor theories. Phys. Rev. Lett. 111, 111101 (2013). arXiv:1308.6587 [gr-qc]

    Google Scholar 

  170. V. Cardoso, I.P. Carucci, P. Pani, T.P. Sotiriou, Matter around Kerr black holes in scalar-tensor theories: scalarization and superradiant instability. Phys. Rev. D88, 044056 (2013). arXiv:1305.6936 [gr-qc]

    Google Scholar 

  171. A. Dima, E. Barausse, Numerical investigation of plasma-driven superradiant instabilities (2020). arXiv:2001.11484 [gr-qc]

    Google Scholar 

  172. S. Chandrasekhar, V. Ferrari, On the non-radial oscillations of slowly rotating stars induced by the lense-thirring effect. Proc. Roy. Soc. Lond. A433, 423–440 (1991)

    ADS  MATH  Google Scholar 

  173. S.L. Detweiler, Klein-Gordon equation and rotating black holes. Phys. Rev. D22, 2323–2326 (1980)

    ADS  Google Scholar 

  174. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  175. D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D13, 198–206 (1976)

    ADS  Google Scholar 

  176. D.C. Dai, D. Stojkovic, Analytic explanation of the strong spin-dependent amplification in Hawking radiation from rotating black holes. J. High Energy Phys. 1008, 016 (2010). arXiv:1008.4586 [gr-qc]

    Google Scholar 

  177. O.J. Dias, R. Emparan, A. Maccarrone, Microscopic theory of black hole superradiance. Phys. Rev. D77, 064018 (2008). arXiv:0712.0791 [hep-th]

    Google Scholar 

  178. I. Bredberg, T. Hartman, W. Song, A. Strominger, Black hole superradiance from Kerr/CFT. J. High Energy Phys. 1004, 019 (2010). arXiv:0907.3477 [hep-th]

    Google Scholar 

  179. M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D80, 124008 (2009). arXiv:0809.4266 [hep-th]

    Google Scholar 

  180. G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review. Living Rev. Rel. 15, 11 (2012). arXiv:1203.3561 [hep-th]

    Google Scholar 

  181. J.M. Bardeen, G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS(2) x S**2. Phys. Rev. D60, 104030 (1999). arXiv:hep-th/9905099 [hep-th]

    Google Scholar 

  182. A.J. Amsel, G.T. Horowitz, D. Marolf, M. M. Roberts, Uniqueness of extremal Kerr and Kerr-Newman black holes. Phys. Rev. D81, 024033 (2010). arXiv:0906.2367 [gr-qc]

    Google Scholar 

  183. O.J. Dias, H.S. Reall, J.E. Santos, Kerr-CFT and gravitational perturbations. J. High Energy Phys. 0908, 101 (2009). arXiv:0906.2380 [hep-th]

    Google Scholar 

  184. L. Bernard, V. Cardoso, T. Ikeda, M. Zilhao, Physics of black hole binaries: geodesics, relaxation modes, and energy extraction. Phys. Rev. D100(4), 044002 (2019). arXiv:1905.05204 [gr-qc]

    Google Scholar 

  185. V. Cardoso, R. Vicente, Moving black holes: energy extraction, absorption cross section and the ring of fire. Phys. Rev. D100(8), 084001 (2019). arXiv:1906.10140 [gr-qc]

    Google Scholar 

  186. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1998)

    MATH  Google Scholar 

  187. R.F. Penna, Energy extraction from boosted black holes: penrose process, jets, and the membrane at infinity. Phys. Rev. D91(8), 084044. arXiv:1503.00728 [astro-ph.HE]

    Google Scholar 

  188. J. Hovdebo, R.C. Myers, Black rings, boosted strings and Gregory-Laflamme. Phys. Rev. D73, 084013 (2006). arXiv:hep-th/0601079 [hep-th]

    Google Scholar 

  189. J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D23, 287 (1981)

    ADS  MathSciNet  Google Scholar 

  190. T.K. Das, Transonic black hole accretion as analogue system. Conf. Proc. C0405132, 279–304 (2004). arXiv:gr-qc/0411006 [gr-qc]

    Google Scholar 

  191. T.K. Das, N. Bilic, S. Dasgupta, Black-hole accretion disc as an analogue gravity model. J. Cosmol. Astropart. Phys. 0706, 009 (2007). arXiv:astro-ph/0604477 [astro-ph]

    Google Scholar 

  192. E. Chaverra, M.D. Morales, O. Sarbach, Quasi-normal acoustic oscillations in the Michel flow (2015). arXiv:1501.01637 [gr-qc]

    Google Scholar 

  193. L.K. Wong, Superradiant scattering by a black hole binary. Phys. Rev. D100(4), 044051 (2019). arXiv:1905.08543 [hep-th]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brito, R., Cardoso, V., Pani, P. (2020). Superradiance in Black-Hole Physics. In: Superradiance. Lecture Notes in Physics, vol 971. Springer, Cham. https://doi.org/10.1007/978-3-030-46622-0_3

Download citation

Publish with us

Policies and ethics