Skip to main content

Abstract

In this chapter, some problems related to civil cases are addressed and solved. Many litigations in the courtrooms concern damage caused by neglect and lack of maintenance, for example of the underground water pipe and sewage systems, large infrastructures (the state of conservation of the irons, the quality of the concrete) etc. Therefore, some important cases will be illustrated to explain how to tackle and solve these important problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi, A. J., Clemefia, G. G., & Cady, P. D. (1982). Condition evaluation of concrete bridges relative to reinforcement corrosion. In Method of evaluating the condition of asphalt-covered decks (vol. 3). Report SHRP-S-325. Strategic Highways Research Program, National Research Council, Washington DC.

    Google Scholar 

  • Argote-Espino, D., Tejero-Andrade, A., Cifuentes-Nava, G., Iriarte, L., Farías, S., Chávez, R. E., et al. (2013). 3D electrical prospection in the archaeological site of El Pahñú, Hidalgo State, Central Mexico. Journal of Archaeological Science, 40(2), 1213–1223.

    Article  Google Scholar 

  • Aubanel, E. E., & Oldham, K. B. (1985). Fourier smoothing without the fast Fourier transform. Byte, 10(2), 207–218.

    Google Scholar 

  • Barnes, C. L., Trottier, J. F., & Forgeron, D. (2008). Improved concrete bridge deck evaluation using GPR by accounting for signal depth-amplitude effects. NDT&E International, 41, 427–433.

    Article  Google Scholar 

  • Barrile, V., & Pucinotti, R. (2005). Application of radar technology to reinforce concrete structures: A case study. NDT&E International, 38, 596–604.

    Article  Google Scholar 

  • Bradshawa, A., & Hunt, B. (1995). Trees in the urban landscape, Principles and practice. Taylor and Francis.

    Google Scholar 

  • Bungey, J. H. (2004). Sub-surface radar testing of concrete: a review. Construction and Building Materials, 18, 1–8.

    Article  Google Scholar 

  • Bungey, J. H., & Millard, S. G. (1993). Radar inspection of structures. Proceedings of the International in Civil Engineering Structures and Buildings, 173.

    Google Scholar 

  • Cantor, T. R. (1984). Review of penetrating radar as applied to nondestructive testing of concrete. In: Malhotra, V. M. (Ed.), ACI SP-82, 581–602, Insituy Nondestructive Testing of Concrete, American Concrete Institute.

    Google Scholar 

  • Cataldo, A., Cannazza, G., De Benedetto, E., & Giaquinto, N. (2012a). A TDR-based system for the localization of leaks in newly-installed, underground pipes made of any material. Measurement Science & Technology, 23(10), 1–9.

    Article  Google Scholar 

  • Cataldo, A., Cannazza, G., De Benedetto, E., & Giaquinto, N. (2012b). A new method for detecting leaks in underground water pipelines. IEEE Sensors Journal, 12(6), 1660–1667.

    Article  Google Scholar 

  • Chavez, G., Tejero, A., Alcantara, M. A., & Chavez, R. E. (2011). The ‘L-Array’, a tool to characterize a fracture pattern in an urban zone. In Expanded Abstracts: Near Surface 2011, European Association of Geoscientists and Engineers, P114155.

    Google Scholar 

  • Clemena, G. G. (1983). Nondestructive inspection of overlaid decks with GPR. Transportation Research Record, 899, 21–32.

    Google Scholar 

  • Clemena, G. G. (1991). Short pulse radar methods. In V. M. Malhotra & N. J. Carino (Eds.), Handbook on non-destructive testing of concrete (pp. 253–274). Boston: CRC Press.

    Google Scholar 

  • Colangelo, G., Lapenna, V., Perrone, A., Piscitelli, S., & Telesca, L. (2006). 2D self potential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy). Engineering Geology, 88(3), 274–286. https://doi.org/10.1016/j.enggeo.2006.09.014.

    Article  Google Scholar 

  • Conyers, L. B. (2004). Ground—penetrating radar for archaeology. Lanham: Alta Mira Press.

    Google Scholar 

  • Demirci, S., Yigit, E., Eskidemir, I. H., & Ozdemir, C. (2012). Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method. NDT and E International, 47, 35–42.

    Article  Google Scholar 

  • Diamanti, N., Giannopoulos, A., & Forde, M. C. (2008). Numerical modelling and experimental verification of GPR to investigate ring separation in brick masonry arch bridges. NDT&E International, 41, 354–363.

    Article  Google Scholar 

  • Forde, M. C. (2004). Ground penetrating radar, Introduction to nondestructive evaluation technologies for bridges. In Transportation Research Board Pre-conference Workshop.

    Google Scholar 

  • Goodman, D. (2013). GPR Slice Version 7.0 Manual. http://www.gpr-survey.com. Accessed June 2013.

  • Goodman, D., Steinberg, J., Damiata, B., Nishimure, Y., Schneider, K., Hiromichi, H., & Hisashi, N. (2006). GPR overlay analysis for archaeological prospection. In Proceedings of the 11th International Conference on Ground Penetrating Radar, Columbus, Ohio, CD-rom.

    Google Scholar 

  • He, X.-Q., Zhu, Z.-Q., Liu, Q.-Y., & Lu, G.-Y. (2009). Review of GPR rebar detection. In PIERS Proceedings (pp. 804–813), Beijing, China, March 23–27, 2009.

    Google Scholar 

  • Lawson, M. (1998). Peer review of tree root damage to buildings (P G Biddle). Arboricultural Journal, 22, 4–13.

    Google Scholar 

  • Leucci, G. (2012). The use of gpr to estimate volumetric water content and reinforced bar diameter in concrete Structures. Journal of Advanced Concrete Technology, 10, 411–422.

    Article  Google Scholar 

  • Leucci, G. (2019). Nondestructive testing for archaeology and cultural heritage: A practical guide and new perspective (pp. 217). Springer, ISBN 978-3-030-01898-6.

    Google Scholar 

  • Leucci, G., De Giorgi, L., Gizzi, F. T., Persico, R. (2017). Integrated geo-scientific surveys in the historical centre of Mesagne (Brindisi, Southern Italy). Natural Hazards, 86, 363–383. https://doi.org/10.1007/s11069-016-2645-x.

  • Lowrie, W. (2007). Fundamentals of geophysics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mattheck, C., & Breloer, H. (1998). La stabilità degli alberi. Il Verde editoriale, Roma.

    Google Scholar 

  • Moore, G. M. (1995). Realities of street tree planting in relation to built structures, from trees in the urban environment (p. 11). RAIPR: Adelaide.

    Google Scholar 

  • Perrier, F. E., Petiau, G., Clerc, G., Bogorodsky, V., Erkul, E., Jouniaux, L., et al. (1997). A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments. Journal of Geomagnetism and Geoelectricity, 49(11–12), 1677–1696. https://doi.org/10.5636/jgg.49.1677.

    Article  Google Scholar 

  • Pucinotti, R., & Barrile, V. (2002). L’utilizzo di tecniche radar per le indagini non distruttive sulle opere in c.a. In Atti del 148 Congresso C.T.E. (Vol. 1, pp. 147–156). Mantova.

    Google Scholar 

  • Pucinotti, R., & De Lorenzo, R. A. (1994). Nondestructive in situ testing for the seismic damageability assessment of ancient r/c structures. In Book of Proceedings, Third International Conference on NDT (p. 189), Chania, Crete, Greece.

    Google Scholar 

  • Puust, R., Kapelan, Z., Savic, D., Koppel, T. (2010). A review of methods for leakage management in pipe networks. Urban Water Journal, 7(1), 25–45.

    Google Scholar 

  • Sandmeier, K. J., (2018). Reflexw 7.0 manual, sandmeier software, zipser strabe 1. D-76227 Karlsruhe, Germany.

    Google Scholar 

  • Tejero-Andrade, A., Cifuentes, G., Chavez, R. E., Lopez Gonzalez, A., & Delgado-Solorzano, C. (2015). ‘‘L’’ and ‘‘Corner’’ arrays for 3D electrical resistivity tomography: An alternative for urban zones. Near Surface Geophysics, 13, 1–13. https://doi.org/10.3997/1873-0604.2015015.

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. Cambridge: CambridgeUniversity Press.

    Book  Google Scholar 

  • Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582.

    Article  Google Scholar 

  • Ulriksen, P. (1982). Application of impulse radar to civil engineering. Ph.D. Lund University of Technology, Lund, Coden, Lutvdg (TVTG-1001), Sweden.

    Google Scholar 

  • Vichabian, Y., & Morgan, F. D. (2002). Self potentials in cave detection. The Leading Edge, 21(9), 866–871. https://doi.org/10.1190/1.1508953.

    Article  Google Scholar 

  • Yau, P. (1991). Urban tree impact on building structures. In Proceedings Royal Australia Institute of Parks and Recreation, State Conference, Melbourne.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leucci, G. (2020). Site Application: Forensic Civil Cases. In: Advances in Geophysical Methods Applied to Forensic Investigations. Springer, Cham. https://doi.org/10.1007/978-3-030-46242-0_5

Download citation

Publish with us

Policies and ethics