Skip to main content

Forensic Geophysics Instrumentation and Data Acquisition

  • Chapter
  • First Online:
Advances in Geophysical Methods Applied to Forensic Investigations

Abstract

Nowadays, in the forensic science geophysical methods should detect, characterise, and discriminate hidden structures to obtain useful information and provide accurate and efficient results for the investigative purpose. In this field in comparison with other direct procedures (such as direct excavations, drill cores, etc.), geophysical methods minimise time and cost factors and maximise the amount of data, information, and knowledge that can be obtained. This chapter introduces a new “not standard” procedures to acquire the geophysical data, new mode to process, and interpret them. A framework for identify the basic problem and successively chose the appropriate solution with data processing and the relationship between the data, the information, and the apriori knowledge is presented. In the book and particularly in this chapter attempts to respond to the question of how data, information, and knowledge can be enhanced for crime site characterisation. The latter item discussed in this chapter is related to the advanced visualisation techniques and how they can help and address classical crime and civil problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annan, A. P. (2001). Ground-penetrating radar workshop notes. Mississauga: Sensors and Software Inc.

    Google Scholar 

  • Annan, A. P. (2005). Ground-penetrating radar. In D. K. Butler (Ed.) Near-surface geophysics. Society of exploration geophysicists: Tulsa, Investigations in Geophysics (Vol. 13, pp. 357–438).

    Google Scholar 

  • Castiglione, P., & Shouse, P. J. (2003). The effect of ohmic cable losses on time domain reflectometry measurements of electrical conductivity. Soil Science Society of America Journal, 67(2), 414–424.

    Article  Google Scholar 

  • Cataldo, A., Cannazza, G., & De Benedetto, E. (2011). Apparatus and method for detection and localization of leaks and faults in underground pipes. European Patent Application EP 2 538 192 A1, 23 Giugno.

    Google Scholar 

  • Cataldo, A., Cannazza, G., De Benedetto, E., & Giaquinto, N. (2012). A TDR-based system for the localization of leaks in newly-installed, underground pipes made of any material. Measurement Science and Technology, 23(10), 105010.

    Article  Google Scholar 

  • Cataldo, A., Cannazza, G., De Benedetto, E., Tarricone, L., & Cipressa, M. (2009a). Metrological assessment of TDR performance for moisture evaluation in granular materials. Measurement, 42(2), 254–263.

    Article  Google Scholar 

  • Cataldo, A., De Benedetto, E., Cannazza, G., Giaquinto, N., Savino, M., & Adamo, F. (2014). Leak detection through microwave reflectometry: From laboratory to practical implementation. Measurement, 47, 963–970.

    Article  Google Scholar 

  • Cataldo, A., Monti, G., De Benedetto, E., Cannazza, G., & Tarricone, L. (2009b). A noninvasive resonance-based method for moisture content evaluation through microstrip antennas. IEEE Transactions on Instrumentation and Measurement, 58(5), 1420–1426.

    Article  Google Scholar 

  • Cataldo, A., Monti, G., De Benedetto, E., Cannazza, G., Tarricone, L., & Catarinucci, L. (2009c). Assessment of a TD-based method for characterization of antennas. IEEE Transactions on Instrumentation and Measurement, 58(5), 1412–1419.

    Article  Google Scholar 

  • Cataldo, A., Piuzzi, E., Cannazza, G., & De Benedetto, E. (2010a). Improvement and metrological validation of TDR methods for the estimation of static electrical conductivity. IEEE Transactions on Instrumentation and Measurement, 59(5), 1207–1215.

    Article  Google Scholar 

  • Cataldo, A., Piuzzi, E., Cannazza, G., De Benedetto, E., & Tarricone, L. (2010b). Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy measurement. Measurement, 43(8), 1031–1039.

    Article  Google Scholar 

  • Conyers, L. B. (2004). Ground-Penetrating Radar for Archaeology. Walnut Creek, CA: Alta Mira Press.

    Google Scholar 

  • Corwin, R. F. (1990). The self-potential method for environmental and engineering applications. In S. H. Ward (Ed.), Geotechnical and environmental geophysics. Vol. I: Review and tutorial. Society of Exploration Geophysics. P.O. Box 702740/Tulsa, OH 74170-2740.

    Google Scholar 

  • Corwin, R. F., & Butler, D. K. (1989). Geotechnical applications of the self-potential method; Report 3: Development of self-potential interpretation techniques for seepage detection. Tech. Rep. REMR-GT-6, U.S. Army Corps of Engineers, Washington DC.

    Google Scholar 

  • Corwin, R. F., & Hoover, D. B. (1979). The self-potential method in geothermal exploration. Geophysics, 44, 226–245.

    Article  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1–3), 11–43.

    Article  Google Scholar 

  • Day-Lewis, F. D., Singha, K., & Binley, A. M. (2005). Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution dependent limitations. Journal Geophysical Research, 110, B08206. https://doi.org/10.1029/2004JB003569.

    Article  Google Scholar 

  • Dragert, H., Lambert, A., & Liard, J. O. (1981). Repeated precise gravity measurements on Vancouver Island, British Columbia. Journal Geophysical Research, 86, 6097–6106.

    Article  Google Scholar 

  • Friel, R., & Or, D. (1999). Frequency analysis of time-domain reflectometry (TDR) with application to dielectric spectroscopy of soil constituents. Geophysics, 64(3), 707–718.

    Article  Google Scholar 

  • Furman, A., Ferré, A. P., & Heath, G. L. (2007). Spatial focusing of electrical resistivity surveys considering geologic and hydrologic layering. Geophysics, 72(2), F65–F73.

    Article  Google Scholar 

  • Furman, A., Ferré, T., & Warrick, A. W. (2003). A sensitivity analysis of electrical resistivity tomography array types using analytical element modeling. Vadose Zone Journal, 2, 416–423.

    Article  Google Scholar 

  • Goldman, L. W. (2007). Journal of Nuclear Medicine Technology, 35(3), 115–128. https://doi.org/10.2967/jnmt.107.042978. http://tech.snmjournals.org/content/35/3/115.full.

  • Golovko, L., Pozdnyakov, A. I. (2010). Applications of self-potential method in agriculture. Moscow State University, Moscow, Russia Conference Paper January 2010. https://doi.org/10.4133/1.3445435.

  • Goodman, D., Piro, S., Nishimura, Y. (2009). GPR archaeometry, in ground penetrating radar: Theory and applications. In H. M. Jol (Ed.). Amsterdam: Elsevier (pp. 479–508).

    Google Scholar 

  • Hounsfield G. N. (1973). Computerized transverse axial scanning (tomography): Part I. Description of system. British Journal of Radiology, 46, 1016–1022.

    Google Scholar 

  • Huisman, J. A., Lin, C. P., Weihermüller, L., & Vereecken, H. (2008). Accuracy of bulk electrical conductivity measurements with time-domain reflectometry. Vadose Zone Journa, 7(2), 426–433.

    Article  Google Scholar 

  • Jol, H. M., & Bristow, C. S. (2003). GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. In C. S Bristow, & H. M. Jol (Eds.), Ground-penetrating radar in sediments (pp. 9–28), Special Publication 211. Geological Society, London.

    Google Scholar 

  • Kane, W. F., Beck, T. J., & Hughes, J. (2010) Applications of time-domain reflectometry to landslide and slope monitoring. In Proceedings of 2nd International Symposium Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications (pp. 305–314).

    Google Scholar 

  • Kim, M. D., Kim, J. C. M., Kim, D., Kim, J., Choi, H., & Kim, C. Kim. (2010). Detection of inorganic chemicals in a sandy soil using TDR: Effect of probe geometry and water content. Geosciences Journal, 14(3), 321–326.

    Article  Google Scholar 

  • Lambert, A., & Beaumont, C. (1977). Nano variations in gravity due to seasonal groundwater movements: implications for the gravity detection of tectonic movements. Journal Geophysical Research, 82, 297–306.

    Article  Google Scholar 

  • Leckebusch, J. (2003). Ground-penetrating radar: a modern three-dimensional prospection method. Archaeological Prospection, 10, 213–241.

    Article  Google Scholar 

  • Leucci, G. (2008). Ground penetrating radar: the electromagnetic signal attenuation and maximum penetration depth. Scholarly Research Exchange, 2008, Article ID 926091. https://doi.org/10.3814/2008/926091.

  • Leucci, G. (2015). Geofisica Applicata all’Archeologia e ai Beni Monumentali (p. 368). Dario Flaccovio Editore, Palermo. ISBN: 9788857905068.

    Google Scholar 

  • Leucci, G. (2019). Nondestructive testing for archaeology and cultural heritage: A practical guide and new perspectives. Cham: Springer International Publishing.

    Book  Google Scholar 

  • Leucci, G., De Giorgi, L., Ditaranto, I., Giuri, F., Ferrari, I., & Scardozzi, G. (2019). New data on the messapian necropolis of Monte D’Elia in Alezio (Apulia, Italy) from topographycal and geophysical surveys. Sensors, 19(16), 3494. https://doi.org/10.3390/s19163494.

    Article  Google Scholar 

  • Leucci, G., De Giorgi, L., & Scardozzi, G. (2014). Geophysical prospecting and remote sensing for the study of the San Rossore area in Pisa (Tuscany, Italy). Journal of Archaeological Science, 52, 256–276. https://doi.org/10.1016/j.jas.2014.08.028.

    Article  Google Scholar 

  • Loke, M. H. (2001). Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. RES2DINV Manual. IRIS Instruments, www.iris-instruments.com.

  • Merriam, J. B. (1992). Atmospheric pressure and gravity. Geophysical Journal International, 109, 488–500.

    Article  Google Scholar 

  • Moritz, H. (1984). Geodetic reference system 1980. Bulletin Géodésique, 58, 388–398.

    Article  Google Scholar 

  • Musset, A. E., & Khan, M. A. (2000). Looking into the earth: An introduction to geological geophysics (pp.139–198). London: Cambridge University Press.

    Google Scholar 

  • Nemarich, C. P. (2001). Time-domain reflectometry liquid levels sensors. IEEE Instrumentation and Measurement Magazine, 4(4), 40–44.

    Article  Google Scholar 

  • Neubauer, W., Eder-Hinterleitner, A., Seren, S., & Melichar, P. (2002). Georadar in the Roman civil town Carnuntum, Austria: An approach for archaeological interpretation of GPR data. Archaeological Prospection, 9(3), 135–156.

    Article  Google Scholar 

  • Niebauer, T. M., Hoskins, J. K., & Faller, J. E. (1986). Absolute gravity: A reconnaissance tool for studying vertical crustal motions. JGR, 91, 9145–9149.

    Article  Google Scholar 

  • O’Connor, K. M., & Dowding, C. H. (1999). Geomeasurement by pulsing TDR cables and probes. CRC Press.

    Google Scholar 

  • Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., & Friedman, S. P. (2003). A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, 2, 444–475.

    Article  Google Scholar 

  • Scheuermann, A., & Huebner, C. (2009). On the feasibility of pressure profile measurements with time-domain reflectometry. IEEE Transactions on Instrumentation and Measurement, 58(2), 467–474.

    Article  Google Scholar 

  • Scheuermann, A., Huebner, C., Wienbroer, H., Rebstock, D., & Huber, G. (2010). Fast time domain reflectometry (TDR) measurement approach for investigating the liquefaction of soils. Measurement Science and Technology, 21(2), 025104.

    Article  Google Scholar 

  • Schmidt, A. (2013). Earth Resistance for Archaeologists. In L. B. Conyers, & K. L. Kvamme (Series Eds.). AltaMira Press. 195 pages. ISBN: 978-0-7591-1204-9.

    Google Scholar 

  • Sensors & Software. (1999). Ground penetrating radar survey design. Mississauga: Sensors & Software.

    Google Scholar 

  • Smith, P., Furse, C., & Gunther, J. (2005). Analysis of spread spectrum time domain reflectometry for wire fault location. IEEE Sensors Journal, 5(6), 1469–1478.

    Article  Google Scholar 

  • Stummer, P., Maurer, H., & Green, A. G. (2004). Experimental design: Electrical resistivity data sets that provide optimum subsurface information. Geophysics, 69, 120–139.

    Google Scholar 

  • Tejero-Andrade, A., Cifuentes, G., Chavez, R. E., Lopez Gonzalez, A., & Delgado-Solorzano, C. (2015). ‘‘L’’ and ‘‘Corner’’ arrays for 3D electrical resistivity tomography: An alternative for urban zones. Near Surface Geophysics, 13, 1–13. https://doi.org/10.3997/1873-0604.2015015.

    Article  Google Scholar 

  • Torge, W. (1989). Gravimetry. Berlin: de Gruyter.

    Google Scholar 

  • Weidelt, P., & Weller, A. (1997). Computation of geoelectrical configuration factors for cylindrical core sample. Scientific Drilling, 6, 27–34.

    Google Scholar 

  • Zegelin, S. J., White, I. & Jenkins, D. R. (1989). Improved field probes for soil-water content and electrical conductivity measurement using time domain reflectometry. Water Resources Research, 25. https://doi.org/10.1029/89WR01417.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Leucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leucci, G. (2020). Forensic Geophysics Instrumentation and Data Acquisition. In: Advances in Geophysical Methods Applied to Forensic Investigations. Springer, Cham. https://doi.org/10.1007/978-3-030-46242-0_3

Download citation

Publish with us

Policies and ethics