Skip to main content

FastFeatGen: Faster Parallel Feature Extraction from Genome Sequences and Efficient Prediction of DNA \(N^6\)-Methyladenine Sites

  • Conference paper
  • First Online:
Computational Advances in Bio and Medical Sciences (ICCABS 2019)

Abstract

\(N^6\)-methyladenine is widely found in both prokaryotes and eukaryotes. It is responsible for many biological processes including prokaryotic defense system and human diseases. So, it is important to know its correct location in genome which may play a significant role in different biological functions. Few computational tools exist to serve this purpose but they are computationally expensive and still there is scope to improve accuracy. An informative feature extraction pipeline from genome sequences is the heart of these tools as well as for many other bioinformatics tools. But it becomes reasonably expensive for sequential approaches when the size of data is large. Hence, a scalable parallel approach is highly desirable. In this paper, we have developed a new tool, called FastFeatGen, emphasizing both developing a parallel feature extraction technique and improving accuracy using machine learning methods. We have implemented our feature extraction approach using shared memory parallelism which achieves around 10\(\times \) speed over the sequential one. Then we have employed an exploratory feature selection technique which helps to find more relevant features that can be fed to machine learning methods. We have employed Extra-Tree Classifier (ETC) in FastFeatGen and performed experiments on rice and mouse genomes. Our experimental results achieve accuracy of 85.57% and 96.64%, respectively, which are better or competitive to current state-of-the-art methods. Our shared memory based tool can also serve queries much faster than sequential technique. All source codes and datasets are available at https://github.com/khaled-rahman/FastFeatGen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ncbi.nlm.nih.gov/geo/.

References

  1. Luo, G.-Z., Blanco, M.A., Greer, E.L., He, C., Shi, Y.: DNA \(N^6\)-methyladenine: a new epigenetic mark in eukaryotes? Nat. Rev. Mol. Cell Biol. 16(12), 705 (2015)

    Article  Google Scholar 

  2. Greer, E.L., et al.: DNA methylation on N\(^6\)-adenine in C. elegans. Cell 161(4), 868–878 (2015)

    Article  MathSciNet  Google Scholar 

  3. Zhang, G., et al.: N\(^6\)-methyladenine DNA modification in Drosophila. Cell 161(4), 893–906 (2015)

    Article  Google Scholar 

  4. Lichinchi, G., et al.: Dynamics of the human and viral m\(^6\)A RNA methylomes during HIV-1 infection of T cells. Nat. Microbiol. 1(4), 16011 (2016)

    Article  Google Scholar 

  5. Lichinchi, G., et al.: Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20(5), 666–673 (2016)

    Article  Google Scholar 

  6. Xiao, C.-L., et al.: N\(^6\)-methyladenine DNA modification in the human genome. Mol. Cell 71(2), 306–318 (2018)

    Article  Google Scholar 

  7. Fu, Y., et al.: N\(^6\)-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161(4), 879–892 (2015)

    Article  Google Scholar 

  8. Frelon, S., Douki, T., Ravanat, J.-L., Pouget, J.-P., Tornabene, C., Cadet, J.: High-performance liquid chromatography- tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem. Res. Toxicol. 13(10), 1002–1010 (2000)

    Article  Google Scholar 

  9. Roberts, R.J., Macelis, D.: Rebase—restriction enzymes and methylases. Nucleic Acids Res. 29(1), 268–269 (2001)

    Article  Google Scholar 

  10. Flusberg, B.A., et al.: Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7(6), 461 (2010)

    Article  Google Scholar 

  11. Fang, G., et al.: Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30(12), 1232 (2012)

    Article  Google Scholar 

  12. Krais, A.M., Cornelius, M.G., Schmeiser, H.H.: Genomic N\(^6\)-methyladenine determination by MEKC with LIF. Electrophoresis 31(21), 3548–3551 (2010)

    Article  Google Scholar 

  13. Chen, W., Lv, H., Nie, F., Lin, H.: i6mA-Pred: identifying DNA N\(^6\)-methyladenine sites in the rice genome. Bioinformatics 35(16), 2796–2800 (2019)

    Article  Google Scholar 

  14. Feng, P., Yang, H., Ding, H., Lin, H., Chen, W., Chou, K.-C.: iDNA6mA-PseKNC: identifying DNA N\(^6\)-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics 111(1), 96–102 (2019)

    Article  Google Scholar 

  15. Tahir, M., Tayara, H., Chong, K.T.: iDNA6mA (5-step rule): identification of DNA N\(^6\)-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. Chemometrics and Intelligent Laboratory Systems (2019)

    Google Scholar 

  16. Doench, J.G., et al.: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34(2), 184 (2016)

    Article  Google Scholar 

  17. Rahman, M.K., Rahman, M.S.: CRISPRpred: a flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems. PLoS ONE 12(8), e0181943 (2017)

    Article  Google Scholar 

  18. Manavalan, B., Lee, J.: SVMQA: support–vector-machine-based protein single-model quality assessment. Bioinformatics 33(16), 2496–2503 (2017)

    Article  Google Scholar 

  19. Chou, K.-C.: Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 273(1), 236–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rahman, M.S., Rahman, M.K., Kaykobad, M., Rahman, M.S.: isGPT: an optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection. Artif. Intell. Med. 84, 90–100 (2018)

    Article  Google Scholar 

  21. Rahman, M.S., Rahman, M.K., Saha, S., Kaykobad, M., Rahman, M.S.: Antigenic: an improved prediction model of protective antigens. Artif. Intell. Med. 94, 28–41 (2019)

    Article  Google Scholar 

  22. Cao, D.-S., Xu, Q.-S., Liang, Y.-Z.: propy: a tool to generate various modes of Chou’s PseAAC. Bioinformatics 29(7), 960–962 (2013)

    Article  Google Scholar 

  23. Liu, B., Liu, F., Fang, L., Wang, X., Chou, K.-C.: repDNA: a Python package to generate various modes of feature vectors for DNA sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 31(8), 1307–1309 (2014)

    Article  Google Scholar 

  24. Liu, B.: BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief. Bioinform. (2017)

    Google Scholar 

  25. Schauer, B.: Multicore processors–a necessity. In: ProQuest Discovery Guides, pp. 1–14 (2008)

    Google Scholar 

  26. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE Signal Process. Mag. 26(6), 26–37 (2009)

    Article  Google Scholar 

  27. Larranaga, P., et al.: Machine learning in bioinformatics. Brief. Bioinform. 7(1), 86–112 (2006)

    Article  MathSciNet  Google Scholar 

  28. Stephenson, N., et al.: Survey of machine learning techniques in drug discovery. Curr. Drug Metab. 20(3), 185–193 (2019)

    Article  Google Scholar 

  29. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  30. Zhou, C., et al.: Identification and analysis of adenine \(N^6\)-methylation sites in the rice genome. Nat. Plants 4(8), 554 (2018)

    Article  Google Scholar 

  31. Ye, P., Luan, Y., Chen, K., Liu, Y., Xiao, C., Xie, Z.: MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Res. 45, D85–D89 (2016). https://doi.org/10.1093/nar/gkw95

    Article  Google Scholar 

  32. Shao, J., Xu, D., Tsai, S.-N., Wang, Y., Ngai, S.-M.: Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS ONE 4(3), e4920 (2009)

    Article  Google Scholar 

  33. Cawley, G.C., Talbot, N.L.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Khaledur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, M.K. (2020). FastFeatGen: Faster Parallel Feature Extraction from Genome Sequences and Efficient Prediction of DNA \(N^6\)-Methyladenine Sites. In: Măndoiu, I., Murali, T., Narasimhan, G., Rajasekaran, S., Skums, P., Zelikovsky, A. (eds) Computational Advances in Bio and Medical Sciences. ICCABS 2019. Lecture Notes in Computer Science(), vol 12029. Springer, Cham. https://doi.org/10.1007/978-3-030-46165-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46165-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46164-5

  • Online ISBN: 978-3-030-46165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics