Skip to main content

An ARVA Sensor Simulator

  • Chapter
  • First Online:
Robot Operating System (ROS)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 895))

Abstract

Robot Operating System (ROS) framework supports different kind of sensors, typically used to develop robotic applications, such as vision and depth sensors, laser scanners and so on. In this chapter, we present a new ROS package designed to simulate ARVA transceiver sensors: arva_sim. ARVA is a French acronym which stands for Appareil de Recherche de Victims en Avalanche and represents the forefront technology adopted in Search & Rescue operations to localize victims of avalanches buried under the snow. In order to simulate its behavior, this package provides two Gazebo plugins: the transmitter and receiver. The aim of this chapter is to describe the mathematical and theoretical background of the transceiver, discussing its implementation and integration with ROS. To demonstrate the accuracy of the proposed sensor model, we present a simulation scenario in which an Unmanned Aerial Vehicle (UAV) equipped with the transceiver sensor performs a basic S&R pattern using the output of ARVA system. It is worth nothing that the proposed ROS package, arva_sim, represents the first simulation model of an ARVA transceiver system and can be useful for the developer to design, test and benchmark faster and smarter search strategies to speed up rescue missions in case of avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The roslaunch is a fundamental tool that manages the launch of the ROS nodes. This command takes as argument a .launch file specifying the list of ROS nodes to be executed. Such launch file can be invoked either directly referencing its complete path, or just specifying the package name and the launch file in that package. In the latter case, the syntax of the command is reported in the line $ roslaunch package_name launch_file. Since the roslaunch command commonly holds the Linux shell, multiple terminals should be used to run the proposed test.

  2. 2.

    http://gazebosim.org/tutorials/?tut=plugins_hello_world.

  3. 3.

    http://wiki.ros.org/xacro.

  4. 4.

    http://wiki.ros.org/xacro.

  5. 5.

    http://docs.ros.org/jade/api/tf2_msgs/html/msg/TFMessage.html.

  6. 6.

    http://wiki.ros.org/visualization_msgs.

  7. 7.

    https://px4.io/.

  8. 8.

    http://wiki.ros.org/mavros.

  9. 9.

    https://github.com/PX4/sitl_gazebo.

  10. 10.

    http://wiki.ros.org/hector_quadrotor.

  11. 11.

    http://docs.ros.org/api/mavros_msgs/html/msg/PositionTarget.html.

References

  1. M. Hutter, C. Gehring, D. Jud, A. Lauber, C.D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, M. Hoepflinger, Anymal - a highly mobile and dynamic quadrupedal robot, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct 2016, pp. 38–44

    Google Scholar 

  2. N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E.M. Hoffman, M. Kamedula, G.F. Rigano, J. Malzahn, S. Cordasco, P. Guria, A. Margan, N.G. Tsagarakis, Centauro: a hybrid locomotion and high power resilient manipulation platform. IEEE Robot. Autom. Lett. 4, 1595–1602 (2019)

    Article  Google Scholar 

  3. M. Konyo, Y. Ambe, H. Nagano, Y. Yamauchi, S. Tadokoro, Y. Bando, K. Itoyama, H. Okuno, T. Okatani, K. Shimizu, E. Ito, ImPACT-TRC Thin Serpentine Robot Platform for Urban Search and Rescue: Results from the ImPACT Tough Robotics Challenge (2019), pp. 25–76

    Google Scholar 

  4. C. Sampedro, A. Rodriguez-Ramos, H. Bavle, A. Carrio, P. de la Puente, P. Campoy, A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J. Intell. Robot. Syst. 95, 601–627 (2019)

    Article  Google Scholar 

  5. D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza, The foldable drone: a morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 1–1 (2018)

    Google Scholar 

  6. L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, N. Tomatis, The sherpa project: smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments, in 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Nov 2012, pp. 1–4

    Google Scholar 

  7. European Project Airborne. https://www.airborne-project.eu/

  8. V. Ferrara, Technical survey about available technologies for detecting buried people under rubble or avalanches. WIT Trans. Built Environ. 150, 91–101 (2015)

    Article  Google Scholar 

  9. Ortovox, Arva ortovox 3+ user manual. https://www.ortovox.com/fileadmin/OX-GAL-3-_web_18_19.pdf, May 2019

  10. Barryvox, Arva mammut barryvox user manual. https://www.mammut.com/assets/download/90/barryvox_user_manual_web_v2_it-4890.pdf, May 2019

  11. L. Joseph, J. Cacace, Mastering ROS for Robotics Programming - Second Edition: Design, Build, and Simulate Complex Robots Using the Robot Operating System, 2nd edn. (Packt Publishing, 2018)

    Google Scholar 

  12. arva_sim repository. https://github.com/jocacace/arva_sim

  13. S. Waharte, N. Trigoni, Supporting search and rescue operations with UAVs, in 2010 International Conference on Emerging Security Technologies (IEEE, 2010), pp. 142–147

    Google Scholar 

  14. T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I.L. Grixa, F. Ruess, M. Suppa, D. Burschka, Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19, 46–56 (2012)

    Article  Google Scholar 

  15. M.A. Goodrich, B.S. Morse, D. Gerhardt, J.L. Cooper, M. Quigley, J.A. Adams, C. Humphrey, Supporting wilderness search and rescue using a camera-equipped mini UAV: research articles. J. Field Robot. 25, 89–110 (2008)

    Article  Google Scholar 

  16. J. Cacace, A. Finzi, V. Lippiello, M. Furci, N. Mimmo, L. Marconi, A control architecture for multiple drones operated via multimodal interaction in search amp; rescue mission, in 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Oct 2016, pp. 233–239

    Google Scholar 

  17. J. Cacace, A. Finzi, V. Lippiello, Implicit robot selection for human multi-robot interaction in search and rescue missions, in 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Aug 2016, pp. 803–808

    Google Scholar 

  18. G. Bevacqua, J. Cacace, A. Finzi, V. Lippiello, Mixed-initiative planning and execution for multiple drones in search and rescue missions, vol. 2015, 07 (2015)

    Google Scholar 

  19. J. Cacace, R. Caccavale, A. Finzi, V. Lippiello, Attentional multimodal interface for multidrone search in the alps, in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 001178–001183

    Google Scholar 

  20. G. Strang, Introduction to Linear Algebra, 4th edn. (Wellesley-Cambridge Press, Wellesley, MA, 2009)

    Google Scholar 

  21. G.A.F. Seber, A Matrix Handbook for Statisticians, 1st edn. (Wiley-Interscience, New York, NY, USA, 2007)

    Google Scholar 

  22. P.L.E. Uslenghi, Electromagnetic fields. IEEE Antennas Propag. Mag. 52, 117–118 (2010)

    Article  Google Scholar 

  23. R. Featherstone, Rigid Body Dynamics Algorithms (Springer, Berlin, Heidelberg, 2007)

    MATH  Google Scholar 

  24. P. Pinies, J.D. Tardos, Fast localization of avalanche victims using sum of gaussians, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, May 2006, pp. 3989–3994

    Google Scholar 

  25. H. Kam, S.-H. Lee, T. Park, C.-H. Kim, Rviz: a toolkit for real domain data visualization, in Telecommunication Systems, vol. 60 (2015), pp. 1–9

    Google Scholar 

  26. L. Kunze, T. Roehm, M. Beetz, Towards semantic robot description languages, in 2011 IEEE International Conference on Robotics and Automation, May 2011, pp. 5589–5595

    Google Scholar 

  27. T. Foote, tf: the transform library, in 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), April 2013, pp. 1–6

    Google Scholar 

  28. C.D. Salos, F. M. Lera, J.L. Villarroel, Digital signal processing in triple antenna arvas, in 2007 IEEE International Conference on Signal Processing and Communications, Nov 2007, pp. 484–487

    Google Scholar 

  29. F. Furrer, M. Burri, M. Achtelik, R. Siegwart, RotorS - A Modular Gazebo MAV Simulator Framework, vol. 625 (2016), pp. 595–625

    Google Scholar 

Download references

Acknowledgements

This research was supported by the European Project AIRBORNE, Grant Agreement no. 780960, web site https://www.airborne-project.eu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Mimmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cacace, J., Mimmo, N., Marconi, L. (2021). An ARVA Sensor Simulator. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 895. Springer, Cham. https://doi.org/10.1007/978-3-030-45956-7_8

Download citation

Publish with us

Policies and ethics