Skip to main content

Landing an Autonomous UAV on a Moving Platform Using only a Front Facing Camera

  • Chapter
  • First Online:
Robot Operating System (ROS)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 895))

  • 2973 Accesses

Abstract

This use case chapter goes through a series of packages developed for the author’s MSc Dissertation that allows an Unmanned Aerial Vehicle (UAV) to land on a moving platform, using only a front facing camera. The implemented system was run and tested on both ROS Indigo and ROS Kinetic and includes software that implements landing zone detection [32], velocity estimation [35], global [30] and local planning [31], as well as simulation [33]. At first, a typical way of running a simulated environment is presented, to allow readers to test its functionality and decide if they want to deepen their understanding of the implemented system. Subsequently, each package is presented separately, highlighting the rationale behind each implementation. After all packages have been analyzed, Concluding, some future work is presented, highlighting the weakness of the implemented software and how it can be improved, along with a summary of the system’s features and advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Alvar, Library for virtual and augmented reality (2016)

    Google Scholar 

  2. A.T. Alvar, ROS wiki page (2018). http://wiki.ros.org/ar_track_alvar

  3. bebop\(\_\)autonomy. ROS wiki page (2018). http://wiki.ros.org/bebop_autonomy

  4. P.J. Benavidez, J. Lambert, A. Jaimes, M. Jamshidi, Landing of a quadcopter on a mobile base using fuzzy logic, in Advance Trends in Soft Computing (Springer, Berlin, 2014), pp. 429–437

    Google Scholar 

  5. M. Beul, S. Houben, M. Nieuwenhuisen, S. Behnke, Fast autonomous landing on a moving target at mbzirc, in Mobile Robots (ECMR), 2017 European Conference on, (IEEE, Paris, 2017), pp. 1–6

    Google Scholar 

  6. S. Birchfield, C. Tomasi, A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans. Pattern Anal. Mach. Intell. 20(4), 401–406 (1998)

    Article  Google Scholar 

  7. camera_calibration, ROS wiki page (2018). http://wiki.ros.org/camera_calibration

  8. T.U. Darmstadt, hector_gazebo github repository (2018). https://github.com/tu-darmstadt-ros-pkg/hector_gazebo

  9. E.W. Dijkstra, A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  10. dwa_local_planner, ROS wiki page (2018). http://wiki.ros.org/dwa_local_planner

  11. D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, D. Scaramuzza, Vision-based autonomous quadrotor landing on a moving platform, in Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics, Shanghai, China, pp. 11–13, (2017)

    Google Scholar 

  12. D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance. IEEE Robot. & Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  13. global_planner, ROS wiki page (2018). http://wiki.ros.org/global_planner

  14. P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  15. R.I. Hartley, Theory and practice of projective rectification. Int. J. Comput. Vis. 35(2), 115–127 (1999)

    Article  Google Scholar 

  16. A. Hornung, M. Phillips, E.G. Jones, M. Bennewitz, M. Likhachev, S. Chitta, Navigation in three-dimensional cluttered environments for mobile manipulation, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  17. M. Hwangbo, J. Kuffner, T. Kanade, Efficient two-phase 3d motion planning for small fixed-wing uavs, in Robotics and Automation, 2007 IEEE International Conference on (IEEE, Nadi, 2007), pp. 1035–1041

    Google Scholar 

  18. M. Keller, F. Hoffmann, C. Hass, T. Bertram, A. Seewald, Planning of optimal collision avoidance trajectories with timed elastic bands. IFAC Proc. Vol. 47(3), 9822–9827 (2014)

    Article  Google Scholar 

  19. J. Michels, A. Saxena, A.Y. Ng, High speed obstacle avoidance using monocular vision and reinforcement learning, in Proceedings of the 22nd International Conference on Machine learning (ACM, New York, 2005), pp. 593–600

    Google Scholar 

  20. Navfn, ROS wiki page (2018). http://wiki.ros.org/navfn

  21. octomap_server, ROS wiki page (2018). http://wiki.ros.org/octomap_server

  22. OpenCV_calibration, OpenCV webpage (2018). https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

  23. OSRF, Open Source Robotics Foundation official page (2018). https://www.openrobotics.org/

  24. C. Patruno, M. Nitti, E. Stella, T. D’Orazio, Helipad detection for accurate uav pose estimation by means of a visual sensor. Int. J. Adv. Robot. Syst. 14(5), 1729881417731083 (2018)

    Google Scholar 

  25. S. Saripalli, J.F. Montgomery, G.S. Sukhatme, Vision-based autonomous landing of an unmanned aerial vehicle, in Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol. 3 (IEEE, Washington, DC, 2002), pp. 2799–2804

    Google Scholar 

  26. S. Saripalli, G.S. Sukhatme, Landing on a moving target using an autonomous helicopter, in Field and Service Robotics (Springer, Berlin, 2003), pp. 277–286

    Google Scholar 

  27. J.Z. Sasiadek, I. Duleba, 3d local trajectory planner for uav. J. Intell. Robot. Syst. 29(2), 191–210 (2000)

    Article  Google Scholar 

  28. G. Simulator, Gazebo Simulator webpage (2018). http://gazebosim.org/

  29. Sphinx, Sphinx Parrot Bebop Simulator official page (2018). https://developer.parrot.com/docs/sphinx/index.html

  30. G. Stavrinos, aerial_global_planner github repository (2018a). https://github.com/gstavrinos/aerial_global_planner

  31. G. Stavrinos, aerial_local_planner github repository (2018b). https://github.com/gstavrinos/aerial_local_planner

  32. G. Stavrinos. ar_helipad github repository (2018c). https://github.com/gstavrinos/ar_helipad

  33. G. Stavrinos, bebop_simulator github repository (2018d). https://github.com/gstavrinos/bebop_simulator

  34. G. Stavrinos, Package Tutorial ros wiki page (2018e). http://wiki.ros.org/Tutorials/Landing%20an%20autonomous%20UAV%20on%20a%20moving%20platform%20using%20only%20a%20front%20facing%20camera

  35. G. Stavrinos, tf_velocity_estimator github repository (2018f). https://github.com/gstavrinos/tf_velocity_estimator

  36. teb_local_planner, ROS wiki page (2018). http://wiki.ros.org/teb_local_planner

  37. J. Thomas, J. Welde, G. Loianno, K. Daniilidis, V. Kumar, Autonomous flight for detection, localization, and tracking of moving targets with a small quadrotor. IEEE Roboti. Autom. Lett. 2(3), 1762–1769 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Stavrinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stavrinos, G. (2021). Landing an Autonomous UAV on a Moving Platform Using only a Front Facing Camera. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 895. Springer, Cham. https://doi.org/10.1007/978-3-030-45956-7_6

Download citation

Publish with us

Policies and ethics