Skip to main content

mrgs: A Multi-Robot SLAM Framework for ROS with Efficient Information Sharing

  • Chapter
  • First Online:
Robot Operating System (ROS)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 895))

Abstract

The exploration of unknown environments is a particularly and intuitively detachable problem, allowing the division of robotic teams into smaller groups, or even into individuals, which explore different areas in the environment. While exploring, the team can discretely reassemble and build a joint representation of the region. However, this approach gives rise to a new set of problems, such as communication, synchronization and information fusion. This work presents mrgs, an open source framework for Multi-Robot SLAM. We propose a solution that seeks to provide any system capable of performing single-robot SLAM with the ability to efficiently communicate with its teammates and to build a global representation of the environment based on the information it exchanges with its peers. The solution is validated through experiments conducted over real-world data and we analyze its performance in terms of scalability and communication efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wiki.ros.org/gmapping.

  2. 2.

    http://wiki.ros.org/karto.

  3. 3.

    http://wiki.ros.org/hector_mapping.

  4. 4.

    http://wiki.ros.org/cartographer.

  5. 5.

    http://wiki.ros.org/roscore.

  6. 6.

    http://wiki.ros.org/sig/Multimaster.

  7. 7.

    http://wiki.ros.org/wifi_comm.

  8. 8.

    Available at https://github.com/lz4/lz4.

  9. 9.

    The mrgs framework is openly available at https://github.com/gondsm/mrgs.

  10. 10.

    The guidelines are available at http://wiki.ros.org/CppStyleGuide.

  11. 11.

    http://wiki.ros.org/melodic/Installation/Ubuntu.

  12. 12.

    It is important to note that, since mrgs is still under heavy development, it is possible that the general operating guidelines for the system change over time. As such, this text includes the most generic instructions necessary, with all detail being included in the project’s repository. In case of conflict, the instructions on the repository should take precedence, as they will be significantly more up to date.

  13. 13.

    Namely the rosbag tool, described at http://wiki.ros.org/rosbag.

  14. 14.

    https://drive.google.com/open?id=18jy5uftf5n-CqTDRJKNVOdtcd13BGPkw.

References

  1. S. Thrun, Robotic mapping: a survey, in Exploring Artificial Intelligence in the New Millennium, vol. 1(1–35) (2002), p. 1

    Google Scholar 

  2. U. Frese, A discussion of simultaneous localization and mapping. Auton. Robots 20(1), 25–42 (2006)

    Google Scholar 

  3. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Google Scholar 

  4. S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust Monte Carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001)

    Google Scholar 

  5. F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping. Auton. Robots 4(4), 333–349 (1997)

    Article  Google Scholar 

  6. S. Thrun, M. Montemerlo, The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)

    Article  Google Scholar 

  7. R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard, TORO - Tree-Based netwORk Optimizer (2008). http://www.openslam.org/toro.html

  8. R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, W. Burgard, g2o: a general framework for graph optimization, in 2011 IEEE International Conference on Robotics and Automation (IEEE, 2011), pp. 3607–3613. http://www.openslam.org/g2o.html

  9. G. Grisetti, C. Stachniss, S. Grzonka, W. Burgard, A tree parameterization for efficiently computing maximum likelihood maps using gradient descent, in Robotics: Science and Systems, vol. 3 (2007), p. 9

    Google Scholar 

  10. K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, R. Vincent, Efficient sparse pose adjustment for 2D mapping, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 22–29

    Google Scholar 

  11. G. Vallicrosa, P. Ridao, H-slam: Rao-blackwellized particle filter SLAM using Hilbert maps. Sensors 18(5), 1386 (2018)

    Article  Google Scholar 

  12. D. Portugal, R.P. Rocha, Scalable, fault-tolerant and distributed multi-robot patrol in real world environments, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013), pp. 4759–4764

    Google Scholar 

  13. M. Meghjani, G. Dudek, Multi-robot exploration and rendezvous on graphs, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 5270–5276

    Google Scholar 

  14. L.A. Andersson, J. Nygards, On multi-robot map fusion by inter-robot observations, in 2009 12th International Conference on Information Fusion (IEEE, 2009), pp. 1712–1721

    Google Scholar 

  15. Z. Li, R. Chellali, Visual place recognition for multi-robots maps merging, in 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (IEEE, 2012), pp. 1–6

    Google Scholar 

  16. D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, B. Stewart, Distributed multirobot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006)

    Article  Google Scholar 

  17. R. Natarajan, M.A. Gennert, Efficient factor graph fusion for multi-robot mapping and beyond, in 2018 21st International Conference on Information Fusion (FUSION) (IEEE, 2018), pp. 1137–1145

    Google Scholar 

  18. S. Carpin, Fast and accurate map merging for multi-robot systems. Auton. Robots 25(3), 305–316 (2008)

    Article  Google Scholar 

  19. X.S. Zhou, S.I. Roumeliotis, Multi-robot SLAM with unknown initial correspondence: the robot rendezvous case, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006), pp. 1785–1792

    Google Scholar 

  20. A. Censi, L. Iocchi, G. Grisetti, Scan matching in the Hough domain, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 2739–2744

    Google Scholar 

  21. A. Howard, Multi-robot simultaneous localization and mapping using particle filters. Int. J. Robot. Res. 25(12), 1243–1256 (2006)

    Article  Google Scholar 

  22. L. Carlone, M.K. Ng, J. Du, B. Bona, M. Indri, Rao-Blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication, in 2010 IEEE International Conference on Robotics and Automation (IEEE, 2010), pp. 243–249

    Google Scholar 

  23. M.T. Lazaro, L.M. Paz, P. Pinies, J.A. Castellanos, G. Grisetti, Multi-robot SLAM using condensed measurements, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013), pp. 1069–1076

    Google Scholar 

  24. P. Zhang, H. Wang, B. Ding, S. Shang, Cloud-based Framework for scalable and real-time multi-robot SLAM, in 2018 IEEE International Conference on Web Services (ICWS) (IEEE, 2018), pp. 147–154

    Google Scholar 

  25. S.S. Ali, A. Hammad, A.S. Tag Eldien, Cloud-based map alignment strategies for multi-robot FastSLAM 2.0. Int. J. Distrib. Sens. Netw. 15(3), 1550147719829329 (2019)

    Google Scholar 

  26. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an open-source robot operating system, in ICRA Workshop on Open Source Software, vol. 3, No. 3.2 (2009), p. 5

    Google Scholar 

  27. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. 23(1), 34 (2007)

    Article  Google Scholar 

  28. S. Kohlbrecher, O. Von Stryk, J. Meyer, U. Klingauf, A flexible and scalable SLAM system with full 3D motion estimation, in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (IEEE, 2011), pp. 155–160

    Google Scholar 

  29. J.M. Santos, D. Portugal, R.P. Rocha, An evaluation of 2D SLAM techniques available in robot operating system, in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Linköping, Sweden, Oct 21–26, (IEEE, 2013), pp. 1–6

    Google Scholar 

  30. W. Hess, D. Kohler, H. Rapp, D. Andor, Real-time loop closure in 2D LIDAR SLAM, in 2016 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2016), pp. 1271–1278

    Google Scholar 

  31. A. Tiderko, F. Hoeller, T. Röhling, The ROS multimaster extension for simplified deployment of multi-robot systems, in Robot Operating System (ROS) (Springer, Cham, 2016), pp. 629–650

    Google Scholar 

  32. A. Tonnesen, T. Lopatic, H. Gredler, B. Petrovitsch, A. Kaplan, S.O. Turke, OLSRD: An Ad Hoc Wireless Mesh Routing Daemon (2008). http://www.olsr.org/

  33. R.P. Rocha, D. Portugal, M. Couceiro, F. Araújo, P. Menezes, J. Lobo, The CHOPIN project: cooperation between Human and rObotic teams in catastroPhic INcidents, in 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (IEEE, 2013), pp. 1–4

    Google Scholar 

  34. J.C. Bermond, L. Gargano, S. Perennes, A.A. Rescigno, U. Vaccaro, Efficient collective communication in optical networks, in International Colloquium on Automata, Languages, and Programming (Springer, Berlin, Heidelberg, 1996), pp. 574–585

    Google Scholar 

  35. A. Cunningham, M. Paluri, F. Dellaert, DDF-SAM: fully distributed SLAM using constrained factor graphs, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 3025–3030

    Google Scholar 

  36. R. Rocha, J. Dias, A. Carvalho, Cooperative multi-robot systems: a study of vision-based 3-D mapping using information theory. Robot. Auton. Syst. 53(3–4), 282–311 (2005)

    Article  Google Scholar 

  37. G.S. Martins, D. Portugal, R.P. Rocha, A comparison of general-purpose FOSS compression techniques for efficient communication in cooperative multi-robot tasks, in 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2 (IEEE, 2014), pp. 136–147

    Google Scholar 

  38. M.A. Abdulgalil, M.M. Nasr, M.H. Elalfy, A. Khamis, F. Karray, Multi-robot SLAM: an overview and quantitative evaluation of MRGS ROS framework for MR-SLAM, in International Conference on Robot Intelligence Technology and Applications (Springer, Cham, 2018), pp. 165–183

    Google Scholar 

  39. N. Shaik, T. Liebig, C. Kirsch, H. Müller, Dynamic map update of non-static facility logistics environment with a multi-robot system, in Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz) (Springer, Cham, 2017), pp. 249–261

    Google Scholar 

  40. J.G. Mangelson, D. Dominic, R.M. Eustice, R. Vasudevan, Pairwise consistent measurement set maximization for robust multi-robot map merging, in 2018 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018), pp. 2916–2923

    Google Scholar 

  41. D. Portugal, B.D. Gouveia, L. Marques, A distributed and multithreaded SLAM architecture for robotic clusters and wireless sensor networks, in Cooperative Robots and Sensor Networks 2015 (Springer, Cham, 2015), pp. 121–141

    Google Scholar 

  42. I. Deutsch, M. Liu, R. Siegwart, A framework for multi-robot pose graph SLAM, in 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR) (IEEE, 2016), pp. 567–572

    Google Scholar 

Download references

Acknowledgements

We are sincerely thankful for the contributions on the free and open source frameworks adopted in this work, particularly: Giorgio Grisetti for his work on RBPF SLAM, Brian Gerkey and Vincent Rabaud for porting and maintaining GMapping for ROS, Stefan Kohlbrecher for the design and development of Hector Mapping for ROS, SRI International for Karto SLAM, and its maintainers for ROS over the years (Bhaskara Marthi, Michael Ferguson, Luc Bettaieb and Russell Toris), and to the overall ROS community. This work was supported by the Seguranças robóTicos coOPerativos (STOP) research project (ref. CENTRO-01-0247-FEDER-017562), co-funded by the “Agência Nacional de Inovação” within the Portugal2020 programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo S. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martins, G.S., Portugal, D., Rocha, R.P. (2021). mrgs: A Multi-Robot SLAM Framework for ROS with Efficient Information Sharing. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 895. Springer, Cham. https://doi.org/10.1007/978-3-030-45956-7_3

Download citation

Publish with us

Policies and ethics