Skip to main content

Intraguild Predation: Predatory Networks at the Microbial Scale

  • Chapter
  • First Online:
The Ecology of Predation at the Microscale

Abstract

Microbes live and interact within diverse communities of organisms which are embedded in complex networks of competition, parasitism, and predation. Predatory interactions in microbial communities have been of central interest in microbial ecology and ecological theory (Cohen et al. 2019; Gao et al. 2019; Gause 1934; Karakoç et al. 2017; Miki and Jacquet 2008; Pernthaler 2005), and interactions within microbial foods webs have been recognized as crucial key drivers for energy fluxes and nutrient transfer and recycling (Azam et al. 1983; Clarholm 1985; Sherr and Sherr 2002). It is now well accepted that top-down control by predators is the most important factor for mortality in bacterial communities (Breitbart 2012; Sherr and Sherr 2002). However, we still do not fully understand how diverse these interactions are, to which extent they are affected by environmental changes and how temporal and spatial scales impact their dynamics and their contribution to ecosystem processes. In order to be able to predict the functioning of microbial communities in the context of global change, we need to fully address multispecies predator-prey interactions. This requires integrating research on eukaryotic micro-predators of microbes, i.e. protists, as well as viruses and predatory bacteria, with a specific focus on the combined effect of micro-predators with partially overlapping prey ranges (Johnke et al. 2014). Only then will we be able to comprehensively understand the relevance on top-down control as compared to a resource-driven bottom-up control in different environments and along different scales. One important, but rather neglected, aspect of multiple predation is whether predators which potentially share prey resources also trophically interact with each other, a process which is called intra-guild predation (IGP) (Polis et al. 1989). While IGP has been described and studied in many ecosystems for higher organisms (Arim and Marquet 2004; Vance-Chalcraft et al. 2007), there is still a considerable knowledge gap regarding its relevance to the microbial world. In this chapter, we therefore attempt to first briefly present the key micro-predator groups on the microscale (in particular the protists and viruses, but also bacterial predators), to introduce the basic concept of intraguild predation (IGP) and to summarize several microbial IGP studies. We finally provide an outlook touching on a few selected aspects and techniques which may be very useful in order to address microbial IGP in a context of basic and applied ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann H-W, DuBow M. Viruses of prokaryotes. In: General properties of bacteriophages. Boca Raton: CRC Press; 1987. p. 202.

    Google Scholar 

  • Adl MS, Gupta VS. Protists in soil ecology and forest nutrient cycling. Can J For Res. 2006;36:1805–17.

    Google Scholar 

  • Adriaenssens EM, Cowan DA. Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol. 2014;80:4470–80.

    PubMed  PubMed Central  Google Scholar 

  • Aijaz I, Koudelka GB. Tetrahymena phagocytic vesicles as ecological micro-niches of phage transfer. FEMS Microbiol Ecol. 2017;93

    Google Scholar 

  • Aleklett K, Kiers ET, Ohlsson P, Shimizu TS, Caldas VE, Hammer EC. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 2018;12:312–9.

    PubMed  Google Scholar 

  • Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses: phageFISH – visualizing intracellular and free viruses. Environ Microbiol. 2013;15:2306–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altermatt F, Fronhofer EA, Garnier A, Giometto A, Hammes F, Klecka J, et al. Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol Evol. 2015;6:218–31.

    Google Scholar 

  • Arim M, Marquet PA. Intraguild predation: a widespread interaction related to species biology. Ecol Lett. 2004;7:557–64.

    Google Scholar 

  • Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.

    Google Scholar 

  • Banerji A, Morin PJ. Phenotypic plasticity, intraguild predation and anti-cannibal defences in an enigmatic polymorphic ciliate. Funct Ecol. 2009;23:427–34.

    Google Scholar 

  • Beebe JM. Studies on the myxobacteria: I, distribution in Iowa soils and description of a new species; II, Myxobacteria as bacterial parasites; III, The morphology and cytology of Myxococcus xanthus sp. n. Iowa State College; 1941.

    Google Scholar 

  • Berdjeb L, Pollet T, Domaizon I, Jacquet S. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. BMC Microbiol. 2011;11:88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergh Ø, BØrsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–8.

    CAS  PubMed  Google Scholar 

  • Berninger U-G, Finlay BJ, Kuuppo-Leinikki P. Protozoan control of bacterial abundances in freshwater. Limnol Oceanogr. 1991;36:139–47.

    Google Scholar 

  • Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek. 2002;81:465–80.

    PubMed  Google Scholar 

  • Boenigk J, Matz C, Jürgens K, Arndt H. Food concentration-dependent regulation of food selectivity of interception-feeding bacterivorous nanoflagellates. Aquat Microb Ecol. 2002;27:195–202.

    Google Scholar 

  • Bonkowski M, Clarholm M. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 2012;2012:237247.

    Google Scholar 

  • Boulanger F-X, Jandricic S, Bolckmans K, Wäckers FL, Pekas A. Optimizing aphid biocontrol with the predator Aphidoletes aphidimyza, based on biology and ecology. Pest Manag Sci. 2019;75:1479–93.

    CAS  PubMed  Google Scholar 

  • Bouvier T, del Giorgio PA. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol. 2003;44:3–15.

    CAS  PubMed  Google Scholar 

  • Bouvy M, Bettarel Y, Bouvier C, Domaizon I, Jacquet S, Floc’h EL, et al. Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change. Environ Microbiol. 2011;13:1842–57.

    CAS  PubMed  Google Scholar 

  • Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.

    Google Scholar 

  • Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13:278–84.

    CAS  PubMed  Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci. 2002;99:14250–5.

    CAS  PubMed  Google Scholar 

  • Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.

    CAS  PubMed  Google Scholar 

  • Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.

    CAS  PubMed  Google Scholar 

  • Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.

    PubMed  Google Scholar 

  • Brum JR, Ignacio-Espinoza JC, Kim E-H, Trubl G, Jones RM, Roux S, et al. Illuminating structural proteins in viral “dark matter” with metaproteomics. Proc Natl Acad Sci. 2016;113:2436–41.

    CAS  PubMed  Google Scholar 

  • Campbell A. General aspects of lysogeny. In: Calendar RL, editor. The bacteriophages. 2nd ed. Oxford/New York: Oxford University Press; 2006. p. 66–73.

    Google Scholar 

  • Cárcer DA, López-Bueno A, Pearce DA, Alcamí A. Biodiversity and distribution of polar freshwater DNA viruses. Sci Adv. 2015;1:e1400127.

    Google Scholar 

  • Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol. 2017;15:6–20.

    CAS  PubMed  Google Scholar 

  • Carrara F, Altermatt F, Rodriguez-Iturbe I, Rinaldo A. Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proc Natl Acad Sci. 2012;109:5761–6.

    CAS  PubMed  Google Scholar 

  • Chatzinotas A, Schellenberger S, Glaser K, Kolb S. Assimilation of cellulose-derived carbon by microeukaryotes in Oxic and anoxic slurries of an aerated soil. Appl Environ Microbiol. 2013;79:5777–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Williams HN. Sharing of prey: coinfection of a bacterium by a virus and a prokaryotic predator. mBio. 2012;3:e00051–12.

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Athar R, Zheng G, Williams HN. Prey bacteria shape the community structure of their predators. ISME J. 2011;5:1314–22.

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Laws EA, Martin JL, Berhane T-K, Gulig PA, Williams HN. Relative contributions of Halobacteriovorax and bacteriophage to bacterial cell death under various environmental conditions. MBio. 2018;9:e01202–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow C-ET, Kim DY, Sachdeva R, Caron DA, Fuhrman JA. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 2014;8:816–29.

    CAS  PubMed  Google Scholar 

  • Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem. 1985;17:181–7.

    CAS  Google Scholar 

  • Cohen Y, Pasternak Z, Johnke J, Abed-Rabbo A, Kushmaro A, Chatzinotas A, et al. Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environ Microbiol. 2019;21:1757–70.

    CAS  PubMed  Google Scholar 

  • Corliss JO. Three centuries of protozoology: a brief tribute to its founding father, A. van Leeuwenhoek of Delft∗. J Protozool. 1975;22:3–7.

    CAS  PubMed  Google Scholar 

  • Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crossman LC, Chen H, Cerdeño-Tárraga A-M, Brooks K, Quail MA, Pineiro SA, et al. A small predatory core genome in the divergent marine Bacteriovorax marinus SJ and the terrestrial Bdellovibrio bacteriovorus. ISME J. 2013;7:148–60.

    CAS  PubMed  Google Scholar 

  • Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature. 2008;454:1084–7.

    CAS  PubMed  Google Scholar 

  • Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol. 2006;8:1667–73.

    CAS  PubMed  Google Scholar 

  • de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019;27:51–63.

    PubMed  Google Scholar 

  • De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities: synthetic microbial ecosystems. Environ Microbiol. 2014;16:1472–81.

    PubMed  Google Scholar 

  • DeBruyn AMH, McCann KS, Moore JC, Strong DR. An energetic framework for trophic control. In: Rooney N, McCann KS, Noakes DLG, editors. From energetics to ecosystems: the dynamics and structure of ecological systems. Dordrecht: Springer Netherlands; 2007. p. 65–85.

    Google Scholar 

  • Dekel-Bird NP, Sabehi G, Mosevitzky B, Lindell D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ Microbiol. 2015;17:1286–99.

    CAS  PubMed  Google Scholar 

  • Deng L, Gregory A, Yilmaz S, Poulos BT, Hugenholtz P, Sullivan MB. Contrasting life strategies of viruses that infect photo- and heterotrophic Bacteria, as revealed by viral tagging. mBio. 2012;3

    Google Scholar 

  • Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–5.

    CAS  PubMed  Google Scholar 

  • Diehl S, Feissel M. Effects of enrichment on three-level food chains with Omnivory. Am Nat. 2000;155:200–18.

    PubMed  Google Scholar 

  • Diehl S, Feissel M. Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates. Ecology. 2001;82:2977–83.

    Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;455:830.

    CAS  Google Scholar 

  • Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses. 2017;9:50.

    PubMed Central  Google Scholar 

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett. 2007;10:522–38.

    PubMed  Google Scholar 

  • Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012;45:71–8.

    CAS  PubMed  Google Scholar 

  • Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enav H, Mandel-Gutfreund Y, Béjà O. Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome. 2014;2:9.

    PubMed  PubMed Central  Google Scholar 

  • Enos BG, Anthony MK, DeGiorgis JA, Williams LE. Prey range and genome evolution of Halobacteriovorax marinus predatory Bacteria from an estuary. mSphere. 2018;3:e00508–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fancello L, Trape S, Robert C, Boyer M, Popgeorgiev N, Raoult D, et al. Viruses in the desert: a metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara. ISME J. 2013;7:359–69.

    CAS  PubMed  Google Scholar 

  • Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.

    CAS  PubMed  Google Scholar 

  • Fenchel T. Ecology of protozoa. Berlin/ Heidelberg: Springer; 1987.

    Google Scholar 

  • Finlay BJ, Esteban GF. Exploring Leeuwenhoek’s legacy: the abundance and diversity of protozoa. Int Microbiol. 2001;4:125–33.

    CAS  PubMed  Google Scholar 

  • Flues S, Bass D, Bonkowski M. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function. Environ Microbiol. 2017;19:3297–309.

    CAS  PubMed  Google Scholar 

  • Friman V-P, Buckling A. Effects of predation on real-time host–parasite coevolutionary dynamics. Ecol Lett. 2013;16:39–46.

    PubMed  Google Scholar 

  • Friman V-P, Jousset A, Buckling A. Rapid prey evolution can alter the structure of predator–prey communities. J Evol Biol. 2014;27:374–80.

    PubMed  Google Scholar 

  • Friman V-P, Dupont A, Bass D, Murrell DJ, Bell T. Relative importance of evolutionary dynamics depends on the composition of microbial predator–prey community. ISME J. 2016;10:1352–62.

    PubMed  Google Scholar 

  • Fu Y, O’Kelly C, Sieracki M, Distel DL. Protistan grazing analysis by flow cytometry using prey labeled by in vivo expression of fluorescent proteins. Appl Environ Microbiol. 2003;69:6848–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.

    CAS  PubMed  Google Scholar 

  • Gallet R, Alizon S, Comte PA, Gutierrez A, Depaulis F, van Baalen M, et al. Predation and disturbance interact to shape prey species diversity. Am Nat. 2007;170:143–54.

    PubMed  Google Scholar 

  • Gallet R, Tully T, Evans MEK. Ecological conditions affect evolutionary trajectory in a predator-prey system. Evolution. 2009;63:641–51.

    PubMed  Google Scholar 

  • Gao E-B, Huang Y, Ning D. Metabolic genes within Cyanophage genomes: implications for diversity and evolution. Genes. 2016;7:80.

    PubMed Central  Google Scholar 

  • Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.

    CAS  PubMed  Google Scholar 

  • Gause GF. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science. 1934;79:16–7.

    CAS  PubMed  Google Scholar 

  • Geisen S. Thorough high-throughput sequencing analyses unravels huge diversities of soil parasitic protists. Environ Microbiol. 2016;18:1669–72.

    PubMed  Google Scholar 

  • Geisen S, Bonkowski M. Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl Soil Ecol. 2018;123:328–33.

    Google Scholar 

  • Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.

    CAS  PubMed  Google Scholar 

  • Gerphagnon M, Macarthur DJ, Latour D, Gachon CMM, Ogtrop FV, Gleason FH, et al. Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environ Microbiol. 2015;17:2573–87.

    PubMed  Google Scholar 

  • Graham EB, Paez-Espino D, Brislawn C, Hofmockel KS, Wu R, Kyrpides NC, et al. Untapped viral diversity in global soil metagenomes. bioRxiv. 2019:583997.

    Google Scholar 

  • Griffin JN, KLdl H, Hawkins SJ, Thompson RC, Jenkins SR. Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning. Ecology. 2008;89:298–305.

    PubMed  Google Scholar 

  • Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heineman Richard H, Springman R, Bull James J. Optimal foraging by bacteriophages through host avoidance. Am Nat. 2008;171:E149–57.

    CAS  PubMed  Google Scholar 

  • Hiltunen T, Becks L. Consumer co-evolution as an important component of the eco-evolutionary feedback. Nat Commun. 2014;5:5226.

    CAS  PubMed  Google Scholar 

  • Hiltunen T, Jones LE, Ellner SP, Hairston NG. Temporal dynamics of a simple community with intraguild predation: an experimental test. Ecology. 2013;94:773–9.

    Google Scholar 

  • Hiltunen T, Ellner SP, Hooker G, Jones LE, Hairston NG. Chapter two – eco-evolutionary dynamics in a three-species food web with Intraguild predation: intriguingly complex. In: Moya-Laraño J, Rowntree J, Woodward G, editors. Advances in ecological research: Academic Press; 2014. p. 41–73.

    Google Scholar 

  • Hol FJH, Rotem O, Jurkevitch E, Dekker C, Koster DA. Bacterial predator–prey dynamics in microscale patchy landscapes. Proc R Soc B Biol Sci. 2016;283:20152154.

    Google Scholar 

  • Holt RD, Polis GA. A theoretical framework for Intraguild predation. Am Nat. 1997;149:745–64.

    Google Scholar 

  • Hoyles L, McCartney AL, Neve H, Gibson GR, Sanderson JD, Heller KJ, et al. Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol. 2014;165:803–12.

    CAS  PubMed  Google Scholar 

  • Hurwitz BL, Sullivan MB. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8

    Google Scholar 

  • Irigoien X, de Roos A. The role of intraguild predation in the population dynamics of small pelagic fish. Mar Biol. 2011;158:1683–90.

    Google Scholar 

  • Jacquet S, Domaizon I, Personnic S, Sime-Ngando T. Do small grazers influence virus-induced mortality of bacteria in Lake Bourget (France)? Fundam Appl Limnol/Archiv für Hydrobiol. 2007;170(2):125–32.

    Google Scholar 

  • Jakobsen HH, Tang KW. Effects of protozoan grazing on colony formation in Phaeocystis globosa (Prymnesiophyceae) and the potential costs and benefits. Aquat Microb Ecol. 2002;27:261–73.

    Google Scholar 

  • Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26–33.

    CAS  PubMed  Google Scholar 

  • Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol. 2014;27:185–90.

    CAS  PubMed  Google Scholar 

  • Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist Protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017a;5

    Google Scholar 

  • Johnke J, Boenigk J, Harms H, Chatzinotas A. Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol Lett. 2017b;364

    Google Scholar 

  • Jürgens KJ, Massana R. Protistan grazing on marine bacterioplankton. Microbial Ecol Oceans. 2008:383.

    Google Scholar 

  • Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, Ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on Phytopathogenic Bacteria. Appl Environ Microbiol. 2000;66:2365–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, To K, Shanks RMQ, Doi Y. Predatory Bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS One. 2013;8:e63397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kallies R, Hölzer M, Brizola Toscan R, Nunes da Rocha U, Anders J, Marz M, et al. Evaluation of sequencing library preparation protocols for viral metagenomic analysis from Pristine Aquifer Groundwaters. Viruses. 2019;11:484.

    CAS  PubMed Central  Google Scholar 

  • Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol. 2014;89:149–61.

    CAS  PubMed  Google Scholar 

  • Kang Y, Wedekin L. Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol. 2013;67:1227–59.

    PubMed  Google Scholar 

  • Karakoç C, Singer A, Johst K, Harms H, Chatzinotas A. Transient recovery dynamics of a predator–prey system under press and pulse disturbances. BMC Ecol. 2017;17:13.

    PubMed  PubMed Central  Google Scholar 

  • Karnatak R, Wollrab S. Mixotrophy and intraguild predation – dynamic consequences of shifts between food web motifs. The Eur Phys J Spec Topics. 2017;226:2135–44.

    Google Scholar 

  • Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.

    CAS  PubMed  Google Scholar 

  • Keeling PJ, Burki F. Progress towards the tree of eukaryotes. Curr Biol. 2019;29:R808–17.

    CAS  PubMed  Google Scholar 

  • Kim M-S, Park E-J, Roh SW, Bae J-W. Diversity and abundance of single-stranded DNA viruses in human feces. Appl Environ Microbiol. 2011;77:8062–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kisand V, Zingel P. Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquat Microb Ecol. 2000;22:135–42.

    Google Scholar 

  • Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-Güemes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466–70.

    CAS  PubMed  Google Scholar 

  • Kratina P, Hammill E, Anholt BR. Stronger inducible defences enhance persistence of intraguild prey. J Anim Ecol. 2010;79:993–9.

    PubMed  Google Scholar 

  • Kratina P, LeCraw RM, Ingram T, Anholt BR. Stability and persistence of food webs with omnivory: is there a general pattern? Ecosphere. 2012;3:art50.

    Google Scholar 

  • Kuppardt S, Chatzinotas A, Kästner M. Development of a fatty acid and RNA stable isotope probing-based method for tracking Protist grazing on Bacteria in wastewater. Appl Environ Microbiol. 2010;76:8222–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurm V, WHvd P, Weidner S, Geisen S, Snoek BL, Bakx T, et al. Competition and predation as possible causes of bacterial rarity. Environ Microbiol. 2019;21:1356–68.

    PubMed  PubMed Central  Google Scholar 

  • Lentendu G, Hübschmann T, Müller S, Dunker S, Buscot F, Wilhelm C. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level. J Microbiol Methods. 2013;95:463–9.

    PubMed  Google Scholar 

  • Lentendu G, Wubet T, Chatzinotas A, Wilhelm C, Buscot F, Schlegel M. Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol. 2014;23:3341–55.

    CAS  PubMed  Google Scholar 

  • Li N, Williams HN. 454 pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water. Antonie Van Leeuwenhoek. 2015;107:305–11.

    PubMed  Google Scholar 

  • Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.

    CAS  PubMed  Google Scholar 

  • Livingston G, Fukumori K, Provete DB, Kawachi M, Takamura N, Leibold MA. Predators regulate prey species sorting and spatial distribution in microbial landscapes. J Anim Ecol. 2017;86:501–10.

    PubMed  Google Scholar 

  • Löder MGJ, Boersma M, Kraberg AC, Aberle N, Wiltshire KH. Microbial predators promote their competitors: commensalism within an intra-guild predation system in microzooplankton. Ecosphere. 2014;5:art128.

    Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature. 2001;409:603–7.

    PubMed  Google Scholar 

  • Mahmoud KK, McNeely D, Elwood C, Koval SF. Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization. Appl Environ Microbiol. 2007;73:7488–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangot J-F, Forn I, Obiol A, Massana R. Constant abundances of ubiquitous uncultured protists in the open sea assessed by automated microscopy. Environ Microbiol. 2018;20:3876–89.

    CAS  PubMed  Google Scholar 

  • Martin MO. Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol. 2002;4:467–78.

    CAS  PubMed  Google Scholar 

  • Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49.

    CAS  PubMed  Google Scholar 

  • Matz C, Kjelleberg S. Off the hook – how bacteria survive protozoan grazing. Trends Microbiol. 2005;13:302–7.

    CAS  PubMed  Google Scholar 

  • Miki T, Jacquet S. Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquat Microb Ecol. 2008;51:195–208.

    Google Scholar 

  • Miki T, Yamamura N. Intraguild predation reduces bacterial species richness and loosens the viral loop in aquatic systems:‘kill the killer of the winner’hypothesis. Aquat Microb Ecol. 2005;40:1–12.

    Google Scholar 

  • Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jrgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Microb Ecol. 2008;53:83–98.

    Google Scholar 

  • Moon-van der Staay SYM-vd, Wachter RD, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–10.

    Google Scholar 

  • Morin P. Productivity, Intraguild predation, and population dynamics in experimental food webs. Ecology. 1999;80:752–60.

    Google Scholar 

  • Müller CB, Brodeur J. Intraguild predation in biological control and conservation biology. Biol Control. 2002;25:216–23.

    Google Scholar 

  • Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, et al. A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments. ISME J. 2018;12:1706–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.

    CAS  PubMed  Google Scholar 

  • Narr A, Nawaz A, Wick LY, Harms H, Chatzinotas A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front Microbiol. 2017;8

    Google Scholar 

  • Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.

    PubMed  PubMed Central  Google Scholar 

  • Norman Jason M, Handley Scott A, Baldridge Megan T, Droit L, Liu Catherine Y, Keller Brian C, et al. Disease-specific alterations in the enteric Virome in inflammatory bowel disease. Cell. 2015;160:447–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Örmälä-Odegrip A-M, Ojala V, Hiltunen T, Zhang J, Bamford JK, Laakso J. Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages. BMC Evol Biol. 2015:15.

    Google Scholar 

  • Otten W, Pajor R, Schmidt S, Baveye PC, Hague R, Falconer RE. Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries. Soil Biol Biochem. 2012;51:53–5.

    CAS  Google Scholar 

  • Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature. 2016;536:425–30.

    CAS  PubMed  Google Scholar 

  • Paix B, Ezzedine JA, Jacquet S. Diversity, dynamics, and distribution of Bdellovibrio and like organisms in Perialpine Lakes. Appl Environ Microbiol. 2019;85:e02494–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parikka KJ, Romancer ML, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biol Rev. 2017;92:1081–100.

    PubMed  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J. 2013;7:756–69.

    CAS  PubMed  Google Scholar 

  • Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.

    CAS  PubMed  Google Scholar 

  • Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting!: bacterial predation. Environ Microbiol. 2016;18:766–79.

    PubMed  Google Scholar 

  • Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46.

    CAS  PubMed  Google Scholar 

  • Petro C, Jochum LM, Schreiber L, Marshall IPG, Schramm A, Kjeldsen KU. Single-cell amplified genomes of two uncultivated members of the deltaproteobacterial SEEP-SRB1 clade, isolated from marine sediment. Mar Genomics. 2019;46:66–9.

    Google Scholar 

  • Petters S, Soellinger A, Bengtsson MM, Urich T. The soil microbial foodweb revisited with metatranscriptomics – predatory Myxobacteria as keystone taxon? bioRxiv. 2018:373365.

    Google Scholar 

  • Philpott SM, Pardee GL, Gonthier DJ. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity. Ecology. 2012;93:992–1001.

    PubMed  Google Scholar 

  • Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R, Williams HN. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol. 2007;9:2441–50.

    CAS  PubMed  Google Scholar 

  • Pinheiro MDO, Power ME, Butler BJ, Dayeh VR, Slawson R, Lee LEJ, et al. Use of Tetrahymena thermophila to study the role of Protozoa in inactivation of viruses in water. Appl Environ Microbiol. 2007;73:643–9.

    CAS  PubMed  Google Scholar 

  • Piwosz K, Pernthaler J. Enrichment of omnivorous Cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS One. 2011;6:e24415.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polis GA, Holt RD. Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol. 1992;7:151–4.

    CAS  PubMed  Google Scholar 

  • Polis GA, Myers CA, Holt RD. The ecology and evolution of Intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst. 1989;20:297–330.

    Google Scholar 

  • Price JE, Morin PJ. Colonization history determines alternate community states in a food web of Intraguild predators. Ecology. 2004;85:1017–28.

    Google Scholar 

  • Price JE, Morin PJ. Community convergence in a simple microbial food web. Ecol Res. 2009;24:587–95.

    Google Scholar 

  • Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White Iii RA, et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012;6:915–26.

    CAS  PubMed  Google Scholar 

  • Ptacnik R, Sommer U, Hansen T, Martens V. Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr. 2004;49:1435–45.

    Google Scholar 

  • Ram ASP, Sime-Ngando T. Functional responses of prokaryotes and viruses to grazer effects and nutrient additions in freshwater microcosms. ISME J. 2008;2:498–509.

    CAS  Google Scholar 

  • Ram ASP, Sime-Ngando T. Distinctive patterns in prokaryotic community composition in response to viral lysis and flagellate grazing in freshwater microcosms. Freshw Biol. 2014;59:1945–55.

    Google Scholar 

  • Reardon S. Bacterial arms race revs up. Nature. 2015;521:402–3.

    CAS  PubMed  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA. Intraguild predation among biological-control agents: theory and evidence. Biol Control. 1995;5:303–35.

    Google Scholar 

  • Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.

    CAS  PubMed  Google Scholar 

  • Salcher MM, Ewert C, Šimek K, Kasalický V, Posch T. Interspecific competition and protistan grazing affect the coexistence of freshwater betaproteobacterial strains. FEMS Microbiol Ecol. 2016;92

    Google Scholar 

  • Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1305.

    PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal. Proc R Soc B Biol Sci. 2016;283:20152724.

    Google Scholar 

  • Schneider FD, Scheu S, Brose U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett. 2012;15:436–43.

    PubMed  Google Scholar 

  • Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol. 2004;6:12–8.

    PubMed  Google Scholar 

  • Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek. 2002;81:293–308.

    CAS  PubMed  Google Scholar 

  • Sherr EB, Sherr BF. Phagotrophic Protists: central roles in microbial food webs. In: Glibert PM, Kana TM, editors. Aquatic microbial ecology and biogeochemistry: a dual perspective. Cham: Springer; 2016. p. 3–12.

    Google Scholar 

  • Silveira CB, Rohwer FL. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes. 2016;2:16010.

    PubMed  PubMed Central  Google Scholar 

  • Šimek K, Chrzanowski TH. Direct and indirect evidence of size-selective grazing on pelagic Bacteria by freshwater Nanoflagellates. Appl Environ Microbiol. 1992;58:3715–20.

    PubMed  PubMed Central  Google Scholar 

  • Šimek K, Pernthaler J, Weinbauer MG, Hornák K, Dolan JR, Nedoma J, et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a Mesoeutrophic reservoir. Appl Environ Microbiol. 2001;67:2723–33.

    PubMed  PubMed Central  Google Scholar 

  • Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD et al. Contrasted micro-eukaryotic diversity associated with Sphagnum mosses in tropical, Subtropical and Temperate Climatic Zones. Microb Ecol. 2019.

    Google Scholar 

  • Stern A, Sorek R. The phage-host arms race: shaping the evolution of microbes. BioEssays. 2011;33:43–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.

    CAS  PubMed  Google Scholar 

  • Thiel K. Old dogma, new tricks—21st century phage therapy. Nat Biotechnol. 2004;22:31–6.

    CAS  PubMed  Google Scholar 

  • Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8.

    Google Scholar 

  • Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hannen EJ, Mooij W, van Agterveld MP, Gons HJ, Laanbroek HJ. Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol. 1999;65:2478–84.

    PubMed  PubMed Central  Google Scholar 

  • Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A. The influence of Intraguild predation on prey suppression and prey release: a meta-analysis. Ecology. 2007;88:2689–96.

    PubMed  Google Scholar 

  • Varon M. Selection of predation-resistant bacteria in continuous culture. Nature. 1979;277:386–8.

    Google Scholar 

  • Velzen E, Thieser T, Berendonk T, Weitere M, Gaedke U. Inducible defense destabilizes predator–prey dynamics: the importance of multiple predators. Oikos. 2018;127:1551–62.

    Google Scholar 

  • Wang S, Brose U, Gravel D. Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology. 2019;100:e02616.

    PubMed  Google Scholar 

  • Weinbauer MG, Hornák K, Jezbera J, Nedoma J, Dolan JR, Šimek K. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ Microbiol. 2007;9:777–88.

    CAS  PubMed  Google Scholar 

  • Wigington CH, Sonderegger D, Brussaard CPD, Buchan A, Finke JF, Fuhrman JA, et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol. 2016;1:15024.

    CAS  PubMed  Google Scholar 

  • Wilken S, Verspagen JMH, Naus-Wiezer S, Donk EV, Huisman J. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory. Ecol Appl. 2014;24:1235–49.

    PubMed  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol. 2005;71:3119–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE. Cultivation-based assessment of Lysogeny among soil Bacteria. Microb Ecol. 2008;56:437–47.

    PubMed  Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Ann Rev Virol. 2017;4:201–19.

    CAS  Google Scholar 

  • Willner D, Hugenholtz P. From deep sequencing to viral tagging: recent advances in viral metagenomics. BioEssays. 2013;35:436–42.

    CAS  PubMed  Google Scholar 

  • Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG. Rapid evolution drives ecological dynamics in a predator–prey system. Nature. 2003;424:303–6.

    CAS  PubMed  Google Scholar 

  • Zhan Z, Li J, Xu K. Detection and quantification of two parasitic ciliates Boveria labialis and Boveria subcylindrica (Ciliophora: Scuticociliatia) by fluorescence in situ hybridization. J Eukaryot Microbiol. 2018;65:440–7.

    CAS  PubMed  Google Scholar 

  • Zhang L, Lueders T. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol Ecol. 2017;93

    Google Scholar 

  • Zingel P, Agasild H, Nõges T, Kisand V. Ciliates are the dominant grazers on Pico- and Nanoplankton in a shallow, naturally highly eutrophic Lake. Microb Ecol. 2007;53:134–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anke Kuppardt-Kirmse or Antonis Chatzinotas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuppardt-Kirmse, A., Chatzinotas, A. (2020). Intraguild Predation: Predatory Networks at the Microbial Scale. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_3

Download citation

Publish with us

Policies and ethics