Skip to main content

Predatory Interactions Between Myxobacteria and Their Prey

  • Chapter
  • First Online:
The Ecology of Predation at the Microscale

Abstract

The myxobacteria are an order of abundant and virtually ubiquitous soil-dwelling Deltaproteobacteria. They initially attracted scientific attention in the nineteenth century for their ability to aggregate when starved, cooperating as a population of cells to form multicellular fruiting bodies containing differentiated cell types. Later, it became apparent that myxobacteria were also predatory organisms, able to kill and consume a broad range of microbes, including both bacteria (Gram-positive and Gram-negative) and fungi. Myxobacteria are copious producers of secondary metabolites, many of which are being exploited industrially as antibiotics and cytotoxic compounds, and such metabolites are presumed to be causally involved in myxobacterial predation in the environment.

Predation by the myxobacteria has continued to receive less interest than either their multicellular development, or their secondary metabolite production. Nevertheless, research is beginning to provide an understanding of several fundamental aspects of myxobacterial predation, particularly for the model predatory myxobacterium Myxococcus xanthus. New insights have been mainly mechanistic, focussing on how myxobacteria kill prey, but are also increasingly ecological. We are starting to understand environmental factors that affect predatory activity, the distribution and diversity of predator and prey species in various ecosystems, and how interactions between predator and prey cells affect predatory success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera L, Toloza L, Gimenez R, Odena A, Oliveira E, Aguilar J, et al. Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917. Proteomics. 2014;14:222–9.

    CAS  PubMed  Google Scholar 

  • Albataineh H, Stevens DC. Marine Myxobacteria: a few good halophiles. Mar Drugs. 2018;16:209.

    PubMed Central  Google Scholar 

  • Amano A, Takeuchi H, Furuta N. Outer membrane vesicles function as offensive weapons in host-parasite interactions. Microbes Infect. 2010;12:791–8.

    CAS  PubMed  Google Scholar 

  • Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol. 2018;29:393–403.

    Google Scholar 

  • Amiri Moghaddam J, Boehringer N, Burdziak A, Kunte HJ, Galinski EA, Schaberle TF. Different strategies of osmoadaptation in the closely related marine myxobacteria Enhygromyxa salina SWBOO7 and Plesiocystis pacifica SIR-1. Microbiol-Sgm. 2016;162:651–61.

    Google Scholar 

  • Amiri Moghaddam J, Poehlein A, Fisch K, Alanjary M, Daniel R, Konig GM, et al. Draft genome sequences of the obligatory marine myxobacterial strains Enhygromyxa salina SWB005 and SWB007. Genome Announc. 2018;6:e00324.

    PubMed  PubMed Central  Google Scholar 

  • Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK. pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol. 2007;189:4539–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awal RP, Garcia R, Muller R. Racemicystis crocea gen. nov., sp. nov., a soil myxobacterium in the family Polyangiaceae. Int J Syst Evol Microbiol. 2016;66:2389–95.

    CAS  PubMed  Google Scholar 

  • Bai J, Kim SI, Ryu S, Yoon H. Identification and characterization of outer membrane vesicle-associated proteins in Salmonella enterica serovar Typhimurium. Infect Immun. 2014;82:4001–10.

    PubMed  PubMed Central  Google Scholar 

  • Baker JL, Chen L, Rosenthal JA, Putnam D, DeLisa MP. Microbial biosynthesis of designer outer membrane vesicles. Curr Opin Biotechnol. 2014;29:76–84.

    CAS  PubMed  Google Scholar 

  • Balagam R, Igoshin OA. Mechanism for collective cell alignment in Myxococcus xanthus Bacteria. PLoS Comput Biol. 2015;11:e1004474.

    PubMed  PubMed Central  Google Scholar 

  • Ballal A, Basu B, Apte SK. The Kdp-ATPase system and its regulation. J Biosci. 2007;32:559–68.

    CAS  PubMed  Google Scholar 

  • Belin D, Plaia G, Boulfekhar Y, Silva F. Escherichia coli SecG is required for residual export mediated by mutant signal sequences and for SecY-SecE complex stability. J Bacteriol. 2015;197:542–52.

    PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Kirby JR. Multicellular development in Myxococcus xanthus is stimulated by predator-prey interactions. J Bacteriol. 2007;189:5675–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev. 2009;33:942–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Chumley T, Cheung P, Kirby JR. Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol. 2006;188:5888–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Scott J, Chumley T, Kirby JR. Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci U S A. 2008;105:17127–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A, Cunha J, et al. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol. 2014;5:474.

    PubMed  PubMed Central  Google Scholar 

  • Berleman JE, Zemla M, Remis JP, Liu H, Davis AE, Worth AN, et al. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior. ISME J. 2016;10:2620–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999;181:4725–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonner PJ, Shimkets LJ. Phospholipid directed motility of surface-motile bacteria. Mol Microbiol. 2006;61:1101–9.

    CAS  PubMed  Google Scholar 

  • Boynton TO, Shimkets LJ. Myxococcus CsgA, Drosophila sniffer, and human HSD10 are cardiolipin phospholipases. Genes Dev. 2015;29:1903–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Branco P, Francisco D, Chambon C, Hebraud M, Arneborg N, Almeida MG, et al. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol. 2014;98:843–53.

    CAS  PubMed  Google Scholar 

  • Brinkhoff T, Fischer D, Vollmers J, Voget S, Beardsley C, Thole S, et al. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME J. 2012;6:1260–72.

    CAS  PubMed  Google Scholar 

  • Brockhurst MA. Population bottlenecks promote cooperation in bacterial biofilms. PLoS One. 2007;2:e634.

    PubMed  PubMed Central  Google Scholar 

  • Bui NK, Gray J, Schwarz H, Schumann P, Blanot D, Vollmer W. The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced Myxospore development. J Bacteriol. 2009;191:494–505.

    CAS  PubMed  Google Scholar 

  • Bull CT, Shetty KG, Subbarao KV. Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis. 2002;86:889–96.

    CAS  PubMed  Google Scholar 

  • Charousova I, Steinmetz H, Medo J, Javorekova S, Wink J. Soil myxobacteria as a potential source of polyketide-peptide substances. Folia Microbiol. 2017;62:305–15.

    CAS  Google Scholar 

  • Copley SD. Moonlighting is mainstream: paradigm adjustment required. BioEssays. 2012;34:578–88.

    CAS  PubMed  Google Scholar 

  • Cotter CR, Schuttler HB, Igoshin OA, Shimkets LJ. Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcus xanthus development. Proc Natl Acad Sci U S A. 2017;114:E4592–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis PD, Atwood J, Orlando R, Shimkets LJ. Proteins associated with the Myxococcus xanthus extracellular matrix. J Bacteriol. 2007a;189:7634–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis PD, Taylor RG, Welch RD, Shimkets LJ. Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol. 2007b;189:9126–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl JL, Tengra FK, Dutton D, Yan J, Andacht TM, Coyne L, et al. Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach. J Bacteriol. 2007;189:3187–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dauros-Singorenko P, Blenkiron C, Phillips A, Swift S. The functional RNA cargo of bacterial membrane vesicles. FEMS Microbiol Lett. 2018;365:fny023.

    Google Scholar 

  • Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403–27.

    CAS  PubMed  Google Scholar 

  • DePas WH, Syed AK, Sifuentes M, Lee JS, Warshaw D, Saggar V, et al. Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus. Appl Environ Microbiol. 2014;80:7079–87.

    PubMed  PubMed Central  Google Scholar 

  • Diodati ME, Gil RE, Plamann L, Singer M. Initiation and early developmental events. In: Whitworth DE, editor. Myxobacteria: multicellularity and differentiation. Washington, DC: ASM Press; 2008. p. 43–76.

    Google Scholar 

  • Dworkin M. Tactic behavior of Myxococcus xanthus. J Bacteriol. 1983;154:452–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellehauge E, Norregaard-Madsen M, Sogaard-Andersen L. The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol. 1998;30:807–17.

    CAS  PubMed  Google Scholar 

  • Evans AG, Davey HM, Cookson A, Currinn H, Cooke-Fox G, Stanczyk PJ, et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology. 2012;158:2742–52.

    CAS  PubMed  Google Scholar 

  • Fiegna F, Velicer GJ. Competitive fates of bacterial social parasites: persistence and self-induced extinction of Myxococcus xanthus cheaters. Proc Biol Sci. 2003;270:1527–34.

    PubMed  PubMed Central  Google Scholar 

  • Findlay BL. The chemical ecology of predatory soil Bacteria. ACS Chem Biol. 2016;11:1502–10.

    CAS  PubMed  Google Scholar 

  • Flower AM, Hines LL, Pfennig PL. SecG is an auxiliary component of the protein export apparatus of Escherichia coli. Mol Gen Genet. 2000;263:131–6.

    CAS  PubMed  Google Scholar 

  • Fontes M, Kaiser D. Myxococcus cells respond to elastic forces in their substrate. Proc Natl Acad Sci U S A. 1999;96:8052–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia RO, Krug D, Muller R. Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Method Enzymol. 2009;458:59–91.

    CAS  Google Scholar 

  • Garcia R, Gerth K, Stadler M, Dogma IJ, Muller R. Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol. 2010;57:878–87.

    PubMed  Google Scholar 

  • Garcia R, Pistorius D, Stadler M, Muller R. Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated Omega-3/6 fatty acids. J Bacteriol. 2011;193:1930–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia R, La Clair JJ, Muller R. Future directions of marine myxobacterial natural product discovery inferred from metagenomics. Marine Drugs. 2018;16:303.

    PubMed Central  Google Scholar 

  • Gemperlein K, Zaburannyi N, Garcia R, La Clair JJ, Muller R. Metabolic and biosynthetic diversity in marine myxobacteria. Mar Drugs. 2018;16:314.

    PubMed Central  Google Scholar 

  • Gloag ES, Turnbull L, Javed MA, Wang HB, Gee ML, Wade SA, et al. Stigmergy co-ordinates multicellular collective behaviours during Myxococcus xanthus surface migration. Sci Rep-UK. 2016;6:26005.

    CAS  Google Scholar 

  • Goudot-Crozel V, Caillol D, Djabali M, Dessein AJ. The major parasite surface-antigen associated with human resistance to schistosomiasis is a 37-Kd glyceraldehyde-3p-dehydrogenase. J Exp Med. 1989;170:2065–80.

    CAS  PubMed  Google Scholar 

  • Grenier D, Bertrand J, Mayrand D. Porphyromonas-Gingivalis outer-membrane vesicles promote bacterial-resistance to chlorhexidine. Oral Microbiol Immun. 1995;10:319–20.

    CAS  Google Scholar 

  • Guerrero R, Pedrosalio C, Esteve I, Mas J, Chase D, Margulis L. Predatory prokaryotes – predation and primary consumption evolved in bacteria. Proc Natl Acad Sci U S A. 1986;83:2138–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.

    CAS  PubMed  Google Scholar 

  • Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem. 2011;286:1269–76.

    CAS  PubMed  Google Scholar 

  • Herrmann J, Abou Fayad A, Muller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep. 2017;34:135–60.

    CAS  PubMed  Google Scholar 

  • Hillesland KL, Lenski RE, Velicer GJ. Ecological variables affecting predatory success in Myxococcus xanthus. Microb Ecol. 2007;53:571–8.

    PubMed  Google Scholar 

  • Hillesland KL, Velicer GJ, Lenski RE. Experimental evolution of a microbial predator’s ability to find prey. Proc R Soc B. 2009;276:459–67.

    PubMed  Google Scholar 

  • Hocking D, Cook FD. Myxobacteria exert partial control of damping-off and root disease in container-grown tree seedlings. Can J Microbiol. 1972;18:1557–60.

    CAS  PubMed  Google Scholar 

  • Holmes AB, Kalvala S, Whitworth DE. Spatial simulations of Myxobacterial development. PLoS Comput Biol. 2010;6:e1000686.

    PubMed  PubMed Central  Google Scholar 

  • Igoshin OA, Mogilner A, Welch RD, Kaiser D, Oster G. Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc Natl Acad Sci U S A. 2001;98:14913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igoshin OA, Goldbeter A, Kaiser D, Oster G. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc Natl Acad Sci U S A. 2004;101:15760–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Yamanaka S. Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett. 1998;169:317–22.

    CAS  PubMed  Google Scholar 

  • Iizuka T, Tokura M, Jojima Y, Hiraishi A, Yamanaka S, Fudou R. Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. Microbes Environ. 2006;21:189–99.

    Google Scholar 

  • Ikemoto A, Bole DG, Ueda T. Glycolysis and glutamate accumlation into synaptic vesicles – role of glyceraldehyde phosphate dehydrogenase and 3-phosphogylcerate kinase. J Biol Chem. 2003;278:5929–40.

    CAS  PubMed  Google Scholar 

  • Jelsbak L, Sogaard-Andersen L. The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis. Proc Natl Acad Sci U S A. 1999;96:5031–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang DM, Kato C, Zhou XW, Wu ZH, Sato T, Li YZ. Phylogeographic separation of marine and soil myxobacteria at high levels of classification. ISME J. 2010;4:1520–30.

    PubMed  Google Scholar 

  • Jin H, Agarwal S, Agarwal S, Pancholi V. Surface export of GAPDH/SDH, a glycolytic enzyme, Is Essential for Streptococcus pyogenes Virulence. mBio. 2011;2:e00068.

    PubMed  PubMed Central  Google Scholar 

  • Jurkevitch E, Davidov Y. Phylogenetic diversity and evolution of predatory prokaryotes. In: Jurkevitch E, editor. Predatory prokaryotes-biology, ecology and evolution. Heidelberg: Springer; 2007. p. 11–56.

    Google Scholar 

  • Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol. 1996;178:2767–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahnt J, Aguiluz K, Koch J, Treuner-Lange A, Konovalova A, Huntley S, et al. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J Proteome Res. 2010;9:5197–208.

    CAS  PubMed  Google Scholar 

  • Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. Biology (Basel). 2014;3:178–204.

    Google Scholar 

  • Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol. 2004;58:75–98.

    CAS  PubMed  Google Scholar 

  • Kaiser D, Warrick H. Myxococcus xanthus swarms are driven by growth and regulated by a pacemaker. J Bacteriol. 2011;193:5898–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda M, Takeuchi K, Inoue K, Umeda M. Localization of the phosphatidylserine-binding site of glyceraldehyde-3-phosphate dehydrogenase responsible for membrane fusion. J Biochem-Tokyo. 1997;122:1233–40.

    CAS  PubMed  Google Scholar 

  • Kaplan HB, Plamann L. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett. 1996;139:89–95.

    CAS  PubMed  Google Scholar 

  • Katsui N, Tsuchido T, Hiramatsu R, Fujikawa S, Takano M, Shibasaki I. Heat-induced blebbing and vesiculation of the outer-membrane of Escherichia coli. J Bacteriol. 1982;151:1523–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns DB, Shimkets LJ. Chemotaxis in a gliding bacterium. Proc Natl Acad Sci U S A. 1998;95:11957–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Lee J, Park J, Gho YS. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104.

    CAS  PubMed  Google Scholar 

  • Kimura Y, Nakano H, Terasaka H, Takegawa K. Myxococcus xanthus mokA encodes a histidine kinase-response regulator hybrid sensor required for development and osmotic tolerance. J Bacteriol. 2001;183:1140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, et al. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol. 2008;104:1667–74.

    CAS  PubMed  Google Scholar 

  • Konovalova A, Lobach S, Sogaard-Andersen L. A RelA-dependent two-tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus. Mol Microbiol. 2012;84:260–75.

    CAS  PubMed  Google Scholar 

  • Korp J, Gurovic MSV, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem. 2016;12:594–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol. 2010;64(64):163–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuner JM, Kaiser D. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J Bacteriol. 1982;151:458–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuspa A, Plamann L, Kaiser D. A-Signaling and the cell-density requirement for Myxococcus xanthus development. J Bacteriol. 1992a;174:7360–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuspa A, Plamann L, Kaiser D. Identification of heat-stable a-factor from Myxococcus xanthus. J Bacteriol. 1992b;174:3319–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SO, Gho YS, Lee JC, Kim SI. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. FEMS Microbiol Lett. 2009;297:150–6.

    CAS  PubMed  Google Scholar 

  • Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009;9:5425–36.

    CAS  PubMed  Google Scholar 

  • Lee B, Holkenbrink C, Treuner-Lange A, Higgs PI. Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol. 2012;194:3058–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZS, Clarke AJ, Beveridge TJ. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol. 1998;180:5478–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YN, Sun H, Ma XY, Lu A, Lux R, Zusman D, et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A. 2003;100:5443–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YN, Bustamante VH, Lux R, Zusman D, Shi WY. Divergent regulatory pathways control a and S motility in Myxococcus xanthus through FrzE, a CheA-CheY fusion protein. J Bacteriol. 2005;187:1716–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone PG, Morphew RM, Whitworth DE. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Front Microbiol. 2017;8:1593.

    PubMed  PubMed Central  Google Scholar 

  • Livingstone PG, Millard AD, Swain MT, Whitworth DE. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding. Microb Genomics. 2018a;4

    Google Scholar 

  • Livingstone PG, Morphew RM, Cookson AR, Whitworth DE. Genome analysis, metabolic potential, and predatory capabilities of Herpetosiphon llansteffanense sp. nov. Appl Environ Microbiol. 2018b;84:e01040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livingstone PG, Morphew RM, Whitworth DE. Genome sequencing and pan-genome analysis of 23 Corallococcus spp. strains reveal unexpected diversity, with particular plasticity of predatory gene sets. Front Microbiol. 2018c;9:3187.

    PubMed  PubMed Central  Google Scholar 

  • Lloyd DG, Whitworth DE. The myxobacterium Myxococcus xanthus can sense and respond to the quorum signals secreted by potential prey organisms. Front Microbiol. 2017;8:439.

    PubMed  PubMed Central  Google Scholar 

  • Lueders T, Kindler R, Miltner A, Friedrich MW, Kaestner M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl Environ Microb. 2006;72:5342–8.

    CAS  Google Scholar 

  • Manhes P, Velicer GJ. Experimental evolution of selfish policing in social bacteria. Proc Natl Acad Sci U S A. 2011;108:8357–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 2011;11:258.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall RC, Whitworth DE. Is “wolf-pack” predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside Kin. Bioessays. 2019;41:1800247.

    Google Scholar 

  • Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol. 2006;61:839–46.

    CAS  PubMed  Google Scholar 

  • Matz C, Kjelleberg S. Off the hook – how bacteria survive protozoan grazing. Trends Microbiol. 2005;13:302–7.

    CAS  PubMed  Google Scholar 

  • Mauriello EMF, Mignot T, Yang ZM, Zusman DR. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol R. 2010;74:229–49.

    CAS  Google Scholar 

  • McBride MJ, Zusman DR. Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol Lett. 1996;137:227–31.

    CAS  PubMed  Google Scholar 

  • McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by gram-negative bacteria is a novel envelope stress response. Mol Microbiol. 2007;63:545–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Soares H, Velicer GJ. Decomposing predation: testing for parameters that correlate with predatory performance by a social bacterium. Microb Ecol. 2013;65:415–23.

    PubMed  Google Scholar 

  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99.

    CAS  PubMed  Google Scholar 

  • Modun B, Williams P. The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun. 1999;67:1086–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr KI. Diversity of myxobacteria – we only see the tip of the iceberg. Microorganisms. 2018;6:e00464.

    Google Scholar 

  • Mohr KI, Stechling M, Wink J, Wilharm E, Stadler M. Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. Microbiology. 2016;5:268–78.

    Google Scholar 

  • Mohr KI, Zindler T, Wink J, Wilharm E, Stadler M. Myxobacteria in high moor and fen: an astonishing diversity in a neglected extreme habitat. Microbiologyopen. 2017;6:e00464.

    PubMed Central  Google Scholar 

  • Mohr KI, Moradi A, Glaeser SP, Kampfer P, Gemperlein K, Nubel U, et al. Nannocystis konarekensis sp nov., a novel myxobacterium from an Iranian desert. Int J Syst Evol Microbiol. 2018;68:721–9.

    CAS  PubMed  Google Scholar 

  • Moore BS, Carter GT, Bronstrup M. Editorial: are natural products the solution to antimicrobial resistance? Nat Prod Rep. 2017;34:685–6.

    CAS  PubMed  Google Scholar 

  • Morero RD, Vinals AL, Bloj B, Farias RN. Fusion of phospholipid-vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium. Biochemistry. 1985;24:1904–9.

    CAS  PubMed  Google Scholar 

  • Morgan AD, MacLean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil Bacteria. Appl Environ Microbiol. 2010;76:6920–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muddala R, Acosta JAM, Barbosa LCA, Boukouvalas J. Synthesis of the marine myxobacterial antibiotic enhygrolide A. J Nat Prod. 2017;80:2166–9.

    CAS  PubMed  Google Scholar 

  • Muller FD, Treuner-Lange A, Heider J, Huntley SM, Higgs PI. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics. 2010;11:264.

    PubMed  PubMed Central  Google Scholar 

  • Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol. 2014;80:5603–10.

    PubMed  PubMed Central  Google Scholar 

  • Muller S, Strack SN, Ryan SE, Kearns DB, Kirby JR. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl Environ Microbiol. 2015;81:203–10.

    PubMed  Google Scholar 

  • Muller S, Strack SN, Ryan SE, Shawgo M, Walling A, Harris S, et al. Identification of functions affecting predator-prey interactions between Myxococcus xanthus and Bacillus subtilis. J Bacteriol. 2016;198:3335–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:781.

    PubMed  PubMed Central  Google Scholar 

  • Nan B, Zusman DR. Uncovering the mystery of gliding motility in the Myxobacteria. Annu Rev Genet. 2011;45:21–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson D, Goldstein JM, Boatright K, Harty DWS, Cook SL, Hickman PJ, et al. pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J Dent Res. 2001;80:371–7.

    CAS  PubMed  Google Scholar 

  • Nett M. Secondary metabolism of predatory bacteria. In: Jurkevitch E, Mitchell R, editors. The ecology of predation at the microscale. New York: Springer; 2019.

    Google Scholar 

  • O’Connor KA, Zusman DR. Behavior of peripheral rods and their role in the life-cycle of Myxococcus xanthus. J Bacteriol. 1991;173:3342–55.

    PubMed  PubMed Central  Google Scholar 

  • Palsdottir H, Remis JP, Schaudinn C, O’Toole E, Lux R, Shi WY, et al. Three-dimensional macromolecular Organization of Cryofixed Myxococcus xanthus biofilms as revealed by Electron microscopic tomography. J Bacteriol. 2009;191:2077–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan HW, He XS, Lux R, Luan J, Shi WY. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact. Microb Ecol. 2013;66:630–8.

    PubMed  PubMed Central  Google Scholar 

  • Pan XL, Kage H, Martin K, Nett M. Herpetosiphon gulosus sp nov., a filamentous predatory bacterium isolated from sandy soil and Herpetosiphon giganteus sp nov., nom. Rev. Int J Syst Evol Micr. 2017;67:2476–81.

    CAS  Google Scholar 

  • Pancholi V, Fischetti VA. A major surface protein on group-a streptococci is a Glyceraldehyde-3-phosphate-dehydrogenase with multiple binding-activity. J Exp Med. 1992;176:415–26.

    CAS  PubMed  Google Scholar 

  • Panter F, Krug D, Baumann S, Muller R. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem Sci. 2018;9:4898–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J. 2013;7:756–69.

    CAS  PubMed  Google Scholar 

  • Pathak DT, Wall D. Identification of the cglC, cglD, cglE, and cglF genes and their role in cell contact-dependent gliding motility in Myxococcus xanthus. J Bacteriol. 2012;194:1940–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak DT, Wei XM, Bucuvalas A, Haft DH, Gerloff DL, Wall D. Cell contact-dependent outer membrane exchange in Myxobacteria: genetic determinants and mechanism. PLoS Genet. 2012;8:160–71.

    Google Scholar 

  • Perez J, Munoz-Dorado J, Brana AF, Shimkets LJ, Sevillano L, Santamaria RI. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor. Microb Biotechnol. 2011;4:175–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez J, Jimenez-Zurdo JI, Martinez-Abarca F, Millan V, Shimkets LJ, Munoz-Dorado J. Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation. Environ Microbiol. 2014;16:2341–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez J, Moraleda-Munoz A, Marcos-Torres FJ, Munoz-Dorado J. Bacterial predation: 75 years and counting! Environ Microbiol. 2016;18:766–79.

    PubMed  Google Scholar 

  • Pham VD, Shebelut CW, Diodati ME, Bull CT, Singer M. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus. Microbiology. 2005;151:1865–74.

    CAS  PubMed  Google Scholar 

  • Powell JT, Chatziefthimiou AD, Banack SA, Cox PA, Metcalf JS. Desert crust microorganisms, their environment, and human health. J Arid Environ. 2015;112:127–33.

    Google Scholar 

  • Raje CI, Kumar S, Harle A, Nanda JS, Raje M. The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem. 2007;282:3252–61.

    CAS  PubMed  Google Scholar 

  • Reichenbach H. Biology of the myxobacteria ecology and taxonomy. In: Dworkin M, Kaiser D, editors. Myxobacteria II. Washington, DC: American Society for Microbiology; 1993.

    Google Scholar 

  • Reichenbach H. The ecology of the myxobacteria. Environ Microbiol. 1999;1:15–21.

    CAS  PubMed  Google Scholar 

  • Remis JP, Wei DG, Gorur A, Zemla M, Haraga J, Allen S, et al. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ Microbiol. 2014;16:598–610.

    CAS  PubMed  Google Scholar 

  • Rendueles O, Amherd M, Velicer GJ. Positively frequency-dependent interference competition maintains diversity and pervades a natural population of cooperative microbes. Curr Biol. 2015a;25:1673–81.

    CAS  PubMed  Google Scholar 

  • Rendueles O, Zee PC, Dinkelacker I, Amherd M, Wielgoss S, Velicer GJ. Rapid and widespread de novo evolution of kin discrimination. Proc Natl Acad Sci U S A. 2015b;112:9076–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–81.

    PubMed  Google Scholar 

  • Rolbetzki A, Ammon M, Jakovljevic V, Konovalova A, Sogaard-Andersen L. Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. Dev Cell. 2008;15:627–34.

    CAS  PubMed  Google Scholar 

  • Rosenberg E, Keller KH, Dworkin M. Cell density-dependent growth of Myxococcus-Xanthus on casein. J Bacteriol. 1977;129:770–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, et al. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol. 2007;25:1281–9.

    CAS  PubMed  Google Scholar 

  • Schulz E, Goes A, Garcia R, Panter F, Koch M, Muller R, et al. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J Control Release. 2018;290:46–55.

    CAS  PubMed  Google Scholar 

  • Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13:605–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seccareccia I, Kost C, Nett M. Quantitative analysis of lysobacter predation. Appl Environ Microbiol. 2015;81:7098–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Zusman DR. Fatal attraction. Nature. 1993a;366:414–5.

    CAS  PubMed  Google Scholar 

  • Shi W, Zusman DR. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A. 1993b;90:3378–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shilo M. Lysis of blue-green algae by myxobacter. J Bacteriol. 1970;104:453–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimkets L, Woese CR. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci U S A. 1992;89:9459–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimkets LJ, Dworkin M, Reichenbach H. The myxobacteria. In: In the prokaryotes. New York: Springer; 2006. p. 31–115.

    Google Scholar 

  • Sirover MA. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem. 2005;95:45–52.

    CAS  PubMed  Google Scholar 

  • Sogaard-Andersen L, Overgaard M, Lobedanz S, Ellehauge E, Jelsbak L, Rasmussen AA. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol Microbiol. 2003;48:1–8.

    CAS  PubMed  Google Scholar 

  • Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ. 2015;3:e968.

    PubMed  PubMed Central  Google Scholar 

  • Spormann AM. Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev. 1999;63:621–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sproer C, Reichenbach H, Stackebrandt E. The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol. 1999;49:1255–62.

    CAS  PubMed  Google Scholar 

  • Stanier RY. A note on Elasticotaxis in Myxobacteria. J Bacteriol. 1942;44:405–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens A. A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J Appl Math. 2000;61:172–82.

    CAS  Google Scholar 

  • Taylor WJ, Draughon FA. Nannocystis exedens: a potential biocompetitive agent against Aspergillus flavus and Aspergillus parasiticus. J Food Protect. 2001;64:1030–4.

    CAS  Google Scholar 

  • Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem. 2001;276:2480–6.

    CAS  PubMed  Google Scholar 

  • Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase Ciota/lambda and plays a role in microtubule dynamics in the early secretory pathway. J Biol Chem. 2002;277:3334–41.

    CAS  PubMed  Google Scholar 

  • Travisano M, Velicer GJ. Strategies of microbial cheater control. Trends Microbiol. 2004;12:72–8.

    CAS  PubMed  Google Scholar 

  • Troselj V, Treuner-Lange A, Sogaard-Andersen L, Wall D. Physiological heterogeneity triggers sibling conflict mediated by the type VI secretion system in an aggregative multicellular bacterium. mBio. 2018;9:e01645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trost M, Wehmhoner D, Karst U, Dieterich G, Wehland J, Jansch L. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics. 2005;5:1544–57.

    CAS  PubMed  Google Scholar 

  • Tyson J, Sockett RE. Predatory bacteria: moving from curiosity towards curative. Trends Microbiol. 2017;25:90–1.

    CAS  PubMed  Google Scholar 

  • Ueki T, Inouye S. Transcriptional activation of a heat-shock gene, lonD, of Myxococcus xanthus by a two component histidine-aspartate phosphorelay system. J Biol Chem. 2002;277:6170–7.

    CAS  PubMed  Google Scholar 

  • Vassallo CN, Wall D. Tissue repair in myxobacteria: a cooperative strategy to heal cellular damage. BioEssays. 2016;38:306–15.

    PubMed  PubMed Central  Google Scholar 

  • Vassallo C, Pathak DT, Cao P, Zuckerman DM, Hoiczyk E, Wall D. Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. Proc Natl Acad Sci U S A. 2015;112:E2939–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife. 2017;6:e29397.

    PubMed  PubMed Central  Google Scholar 

  • Velicer GJ. Evolution of cooperation: does selfishness restraint lie within? Curr Biol. 2005;15:R173–5.

    CAS  PubMed  Google Scholar 

  • Velicer GJ, Mendes-Soares H. Bacterial predators. Curr Biol. 2009;19:R55–6.

    CAS  PubMed  Google Scholar 

  • Velicer GJ, Stredwick KL. Experimental social evolution with Myxococcus xanthus. Antonie Van Leeuwenhoek. 2002;81:155–64.

    PubMed  Google Scholar 

  • Velicer GJ, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.

    CAS  PubMed  Google Scholar 

  • Velicer GJ, Kroos L, Lenski RE. Developmental cheating in the social bacterium Myxococcus xanthus. Nature. 2000;404:598–601.

    CAS  PubMed  Google Scholar 

  • Vos M, Velicer GJ. Social conflict in centimeter-and global-scale populations of the bacterium Myxococcus xanthus. Curr Biol. 2009;19:1763–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Kadouri DE, Wu M. Genomic insights into an obligate epibiotic bacterial predator: micavibrio aeruginosavorus ARL-13. BMC Genomics. 2011;12:453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Xia Y, Cui J, Gu Z, Song Y, Chen YQ, et al. The roles of moonlighting proteins in bacteria. Curr Issues Mol Biol. 2014;16:15–22.

    PubMed  Google Scholar 

  • Wang G, Xia Y, Song X, Ai L. Common non-classically secreted bacterial proteins with experimental evidence. Curr Microbiol. 2016;72:102–11.

    CAS  PubMed  Google Scholar 

  • Wei X, Vassallo CN, Pathak DT, Wall D. Myxobacteria produce outer membrane-enclosed tubes in unstructured environments. J Bacteriol. 2014;196:1807–14.

    PubMed  PubMed Central  Google Scholar 

  • Weissman KJ, Muller R. A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem. 2009;17:2121–36.

    CAS  PubMed  Google Scholar 

  • Weissman KJ, Muller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep. 2010;27:1276–95.

    CAS  PubMed  Google Scholar 

  • Welch R, Kaiser D. Cell behavior in traveling wave patterns of myxobacteria. Proc Natl Acad Sci U S A. 2001;98:14907–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth DE. Myxobacteria: multicellularity and differentiation. Washington, DC: ASM Press; 2008.

    Google Scholar 

  • Whitworth DE. Myxobacterial vesicles death at a distance? Adv Appl Microbiol. 2011;75:1–31.

    CAS  PubMed  Google Scholar 

  • Whitworth DE. Two-component regulatory systems in prokaryotes. In: Filloux A, editor. Bacterial regulatory networks. Norwich: Horizon Scientific Press; 2012. p. 191–222.

    Google Scholar 

  • Whitworth DE. Genome-wide analysis of myxobacterial two-component systems: genome relatedness and evolutionary changes. BMC Genomics. 2015;16:780.

    PubMed  PubMed Central  Google Scholar 

  • Whitworth DE. Group therapy or mass suicide? The sharing of cellular damage between members of a bacterial community. Bioessays. 2017;39

    Google Scholar 

  • Whitworth DE. Interspecies conflict affects RNA expression. FEMS Microbiol Lett. 2018;365

    Google Scholar 

  • Whitworth DE, Cock PJ. Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Microbiology. 2008a;154:360–72.

    CAS  PubMed  Google Scholar 

  • Whitworth DE, Cock PJA. Myxobacterial two-component systems. In: Whitworth DE, editor. Myxobacteria: multicellularity and differentiation. Washington, DC: ASM Press; 2008b. p. 169–89.

    Google Scholar 

  • Whitworth DE, Morgan BH. Synergism between bacterial GAPDH and OMVs: disparate mechanisms but co-operative action. Front Microbiol. 2015;6:1231.

    PubMed  PubMed Central  Google Scholar 

  • Whitworth DE, Holmes AB, Irvine AG, Hodgson DA, Scanlan DJ. Phosphate acquisition components of the Myxococcus xanthus pho regulon are regulated by both phosphate availability and development. J Bacteriol. 2008;190:1997–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth DE, Slade SE, Mironas A. Composition of distinct sub-proteomes in Myxococcus xanthus: metabolic cost and amino acid availability. Amino Acids. 2015;47:2521–31.

    CAS  PubMed  Google Scholar 

  • Wielgoss S, Fiegna F, Rendueles O, Yu YN, Velicer GJ. Kin discrimination and outer membrane exchange in Myxococcus xanthus: a comparative analysis among natural isolates. Mol Ecol. 2018;27:3146–58.

    CAS  PubMed  Google Scholar 

  • Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R, et al. Injections of predatory Bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol. 2016;26:3343–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wireman JW, Dworkin M. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol. 1977;129:798–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wrótniak-Drzewiecka W, Brzezińska A, Dahm H, Ingle A, Rai M. Current trends in myxobacteria research. Ann Microbiol. 2015;67:17–33.

    Google Scholar 

  • Wu SS, Kaiser D. Genetic and functional evidence that type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol. 1995;18:547–58.

    CAS  PubMed  Google Scholar 

  • Wu Y, Kaiser AD, Jiang Y, Alber MS. Periodic reversal of direction allows Myxobacteria to swarm. Proc Natl Acad Sci U S A. 2009;106:1222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Wei X, Ebright R, Wall D. Antibiotic production by myxobacteria plays a role in predation. J Bacteriol. 2011;193:4626–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C, Zhang H, Shimkets LJ, Igoshin OA. Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates. Proc Natl Acad Sci U S A. 2011;108:5915–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youderian P, Hartzell PL. Transposon insertions of magellan-4 that impair social gliding motility in Myxococcus xanthus. Genetics. 2006;172:1397–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youderian P, Burke N, White DJ, Hartzell PL. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol. 2003;49:555–70.

    CAS  PubMed  Google Scholar 

  • Yun SC. Selection and a 3-year field trial of Sorangium cellulosum KYC 3262 against anthracnose in hot pepper. Plant Pathol J. 2014;30:279–87.

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lueders T. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol Ecol. 2017;93

    Google Scholar 

  • Zhang YQ, Li YZ, Wang B, Wu ZH, Zhang CY, Gong X, et al. Characteristics and living patterns of marine myxobacterial isolates. Appl Environ Microbiol. 2005;71:3331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Vaksman Z, Litwin DB, Shi P, Kaplan HB, Igoshin OA. The mechanistic basis of Myxococcus xanthus rippling behavior and its physiological role during predation. PLoS Comput Biol. 2012;8:e1002715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yao Q, Cai Z, Xie X, Zhu H. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China. PLoS One. 2013;8:e70466.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XW, Li SG, Li W, Jiang DM, Han K, Wu ZH, et al. Myxobacterial community is a predominant and highly diverse bacterial group in soil niches. Environ Microbiol Rep. 2014;6:45–56.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Whitworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furness, E., Whitworth, D.E., Zwarycz, A. (2020). Predatory Interactions Between Myxobacteria and Their Prey. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_1

Download citation

Publish with us

Policies and ethics