Skip to main content

Data-Driven Modal Decomposition Techniques for High-Dimensional Flow Fields

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

Data-driven decomposition techniques are presented for the analysis and development of reduced-order models of complex flow dynamics. The Proper Orthogonal Decomposition (POD) produces optimal representations of the dynamics in the sense of the energy norm. Alternatively, Dynamic Mode Decomposition (DMD) efficiently extracts coherent dynamics based on eigendecompositions of linearized dynamics. An extension to the latter, the Higher Order Dynamic Mode Decomposition (HODMD) method uses time delays to develop efficient reduced models to represent complex dynamics in a nonintrusive manner. High-fidelity simulation results of a laboratory-scale single-element gas turbine combustor are used to demonstrate and evaluate the capabilities of the aforementioned decomposition techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.W. Strutt, B. Rayleigh, The Theory of Sound, vol. 2 (Macmillian, New York, 1896)

    MATH  Google Scholar 

  2. T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors. Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations (1999), p. V002T02A001

    Google Scholar 

  3. T.C. Lieuwen, V. Yang, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (American Institute of Aeronautics and Astronautics, Inc., 2010)

    Google Scholar 

  4. T. Feldman, M. Harvazinski, C. Merkle, W. Anderson, Comparison between simulation and measurement of self-excited combustion instability, in 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2012)

    Google Scholar 

  5. T. Kim, M. Ahn, J. Hwang, S. Kim, Y. Yoon, The experimental investigation on the response of the Burke-Schumann flame to acoustic excitation. Proc. Combust. Inst. 36(1), 1629–1636 (2017)

    Article  Google Scholar 

  6. K. Taira, S.L. Brunton, S.T.M. Dawson, C.W. Rowley, T. Colonius, B.J. McKeon, O.T. Schmidt, S. Gordeyev, V. Theofilis, L.S. Ukeiley, Modal analysis of fluid flows: an overview. AIAA J. 55(12), 4013–4041 (2017)

    Article  Google Scholar 

  7. K. Taira, M.S. Hemati, S.L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S.T.M. Dawson, C.-A. Yeh, Modal analysis of fluid flows: applications and outlook, 1–36 (2019), arXiv:1903.05750

  8. C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(03), 997–1013 (2005)

    Article  MathSciNet  Google Scholar 

  9. G. Berkooz, P. Holmes, L. John, The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  10. K. Willcox, J. Peraire, Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2012)

    Article  Google Scholar 

  11. A. Chatterjee, An introduction to the proper orthogonal decomposition: Rensselaer libraries quick search. Current Sci. 78(7), 808–817 (2000)

    Google Scholar 

  12. P. Iudiciani, C. Duwig, S.M. Husseini, R.Z. Szasz, L. Fuchs, E.J. Gutmark, Proper orthogonal decomposition for experimental investigation of flame instabilities. AIAA J. 50(9), 1843–1854 (2012)

    Article  Google Scholar 

  13. P.J. Schmid, Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  14. H. Arbabi, I. Mezić, Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16(4), 2096–2126 (2017)

    Article  MathSciNet  Google Scholar 

  15. J. Nathan Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (SIAM, 2016)

    Google Scholar 

  16. J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, J. Nathan Kutz, On dynamic mode decomposition: theory and applications, 1–30 (2013), arXiv:1312.0041

  17. A. Seena, H.J. Sung, Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. Int. J. Heat Fluid Flow 32(6), 1098–1110 (2011)

    Article  Google Scholar 

  18. C. Huang, W.E. Anderson, M.E. Harvazinski, V. Sankaran, Analysis of self-excited combustion instabilities using decomposition techniques. AIAA J. 54(9), 2791–2807 (2016)

    Article  Google Scholar 

  19. A. Towne, O.T. Schmidt, T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867 (2018)

    Article  MathSciNet  Google Scholar 

  20. S. Pan, K. Duraisamy, On the structure of time-delay embedding in linear models of non-linear dynamical systems (2019), arXiv:1902.05198

  21. S. Le Clainche, J.M. Vega, Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16(2), 882–925 (2017)

    Article  MathSciNet  Google Scholar 

  22. S.L. Brunton, B.W. Brunton, J.L. Proctor, E. Kaiser, J. Nathan Kutz, Chaos as an intermittently forced linear system. Nat. Commun. 8(1), 1–8 (2017)

    Google Scholar 

  23. M. Mohebujjaman, L.G. Rebholz, T. Iliescu, Physically-constrained data-driven, filtered reduced order modeling of fluid flows, 1–21 (2018), arXiv:1806.00350

  24. B.R. Noack, M. Morzynski, G. Tadmor, Reduced-Order Modelling for Flow Control, vol. 528 (Springer Science & Business Media, Berlin, 2011)

    Book  Google Scholar 

  25. L. Sirovich, Turbulence and the dynamics of coherent structures part i: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  Google Scholar 

  26. C.W. Rowley, I. Mezi, S. Bagheri, P. Schlatter, D.S. Henningson, Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  Google Scholar 

  27. F. Takens, Detecting strange attractors in turbulence dynamical systems and turbulence, Warwick 1980. Dyn. Syst. Turbul. 898, 366–381 (1981)

    Google Scholar 

  28. H. Arbabi, I. Mezić, Study of dynamics in post-transient flows using Koopman mode decomposition. Phys. Rev. Fluids 2(12) (2017)

    Google Scholar 

  29. G.E. Andrews, H.S. Alkabie, M.M.A. Aziz, U.S. Abdul Hussain, N.A. Al Dabbagh, N.A. Ahmad, A.A. Shaikly, M. Kowkabi, A.R. Shahabadi, High-intensity burners with low NOx emissions. Proc. Inst. Mech. Eng., Part A: J. Power Energy 206(1), 3–17 (1992)

    Article  Google Scholar 

  30. C. Huang, C. Yoon, R. Gejji, W. Anderson, V. Sankaran, Computational study of combustion dynamics in a single- element lean direct injection gas turbine combustor, in 52nd Aerospace Sciences Meeting, vol. 298 (2014), pp. 1–14

    Google Scholar 

  31. R.M. Gejji, C. Huang, C. Fugger, C. Yoon, W. Anderson, Parametric investigation of combustion instabilities in a single-element lean direct injection combustor. Int. J. Spray Combust. Dyn. 0(0)175682771878585 (2018)

    Article  Google Scholar 

  32. S. Candel, D. Durox, T. Schuller, J.-F. Bourgouin, J.P. Moeck, Dynamics of swirling flames. Ann. Rev. Fluid Mech. 46(1), 147–173 (2013)

    Article  MathSciNet  Google Scholar 

  33. D. Li, G. Xia, V. Sankaran, C.L Merkle, Computational framework for complex fluids applications, in 3rd International Conference on Computational Fluid Dynamics (2004)

    Google Scholar 

  34. C. Huang, R. Gejji, W. Anderson, C. Yoon, V. Sankaran, Combustion dynamics in a single-element lean direct injection gas turbine combustor. Combust. Sci. Technol. 0(0), 1–28 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the National Science Foundation(NSF) Grant #1634709. Computational resources were provided by the Air Force Research Laboratories (AFRL). The authors would also like to acknowledge Shawou Pan for help with HODMD methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Duraisamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnold-Medabalimi, N., Huang, C., Duraisamy, K. (2020). Data-Driven Modal Decomposition Techniques for High-Dimensional Flow Fields. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_7

Download citation

Publish with us

Policies and ethics