Skip to main content

Dissipation Element Analysis of Inert and Reacting Turbulent Flows

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

Dissipation elements provide a procedure for compartmentalizing scalar fields into physically meaningful sub-units which provides a direct measure for turbulent scales. Furthermore, dissipation elements enable a variety of additional ways of investigating non-local effects in reacting and non-reacting turbulent flows. After the underlying physical ideas of dissipation elements are explained and a parameterization of dissipation elements is defined, the method of detecting dissipation elements with gradient trajectories is explained and physical and numerical prerequisites are presented. Common characteristics of dissipation elements are interpreted and compared for a large range of selected reacting and non-reacting flow configurations. To provide the reader with a degree of familiarity, dissipation element statistics are then related to more commonly used methods of obtaining statistics. The additional benefit of using the dissipation element analysis in free shear flows is highlighted by using it as an alternative way of identifying turbulent core regions. Next, a dissipation element-based procedure for the local investigation of the turbulence–combustion interaction in the context of non-premixed flames is presented. The chapter is concluded with the application of a dissipation element statistics-based modeling procedure for computational fluid dynamics of a passenger car diesel engine, employing the previously gained insight into the structure of turbulent scalar fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Wray, J.C.R. Hunt, Algorithms for classification of turbulent structures, in Topological Fluid Mechanics, eds. by H.K. Moffat, A. Tsinober (Cambridge University Press, Cambridge, 1990), pp. 95–104

    Google Scholar 

  2. N. Peters, L. Wang, Dissipation element analysis of scalar fields in turbulence. C. R. Mechanique 334, 493–506 (2006)

    Article  Google Scholar 

  3. A. Schnorr, D. Helmrich, D. Denker, T. Kuhlen, B. Hentschel, Feature tracking by two-step optimization. Trans. Vis. Comput, Graph (accepted for publication) (2018)

    Google Scholar 

  4. L. Wang, Geometrical description of homogeneous shear turbulence using dissipation element analysis. PhD Thesis, RWTH University, 2008

    Google Scholar 

  5. D. D’acunto, K. Kurdyka, Bounds for gradient trajectories and geodesic diameter of real algebraic sets. Bull. Lond. Math. Soc. 38, 951–968 (2006)

    Article  MathSciNet  Google Scholar 

  6. L.D. Floriani, M. Spangnuolo (eds.), Shape Analysis and Structuring (Springer, Berlin, 2007)

    MATH  Google Scholar 

  7. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  8. G.S. Jiang, C.W. Shu, Efficient implementation of weighted eno schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  9. L. Wang, N. Peters, The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)

    Article  Google Scholar 

  10. M. Gampert, P. Schaefer, J. Goebbert, N. Peters, Decomposition of the field of the turbulent kinetic energy into regions of compressive and extensive strain. Physica Scripta155(014002) (2013)

    Google Scholar 

  11. D. Denker, A. Attili, S. Luca, M. Gauding, F. Bisetti, H. Pitsch, Dissipation element analysis of premixed jet flames. Comb. Sci. Tech., volume in press (2019)

    Google Scholar 

  12. M. Gampert, P. Schaefer, N. Peters, Experimental investigation of dissipation-element statistics in scalar fields in a jet flow. J. Fluid Mech. 724, 337–366 (2013)

    Article  Google Scholar 

  13. J. Boschung, F. Hennig, D. Denker, H. Pitsch, R.J. Hill, Analysis of structure function equations up to the seventh order. J. Turbul. 1–32 (2017)

    Google Scholar 

  14. A. Attili, F. Bisetti, Fluctuations of a passive scalar in a turbulent mixing layer. Phys. Rev. E 3, 03301 (2013)

    Google Scholar 

  15. D. Denker, K. Niemietz, A. Attili, M. Korkmaz, H. Pitsch, Prediction of non-premixed combustion regimes in a di diesel engine in various operation points, in Proceedings of the 9th European Combustion Meeting, April 14–17, Lisbon, Portugal (2019)

    Google Scholar 

  16. M. Holzer, E.D. Siggia, Turbulent mixing of a passive scalar. Phys. Fluids 6, 1820–1837 (1994)

    Article  MathSciNet  Google Scholar 

  17. M. Gampert, J.H. Goebbert, P. Schaefer, M. Gauding, N. Peters, F. Aldudak, M. Oberlack, Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys. 13, 043012 (2011)

    Article  Google Scholar 

  18. R. Prasad, K.R. Sreenivasan, Scalar interfaces in digital images in turbulent flows. Exp. Fluids 7, 259–264 (1989)

    Article  Google Scholar 

  19. D.K. Bisset, M.M.R.J.C.R. Hunt, The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383–410 (2002)

    Article  MathSciNet  Google Scholar 

  20. M.S. Chong, A.E. Perry, B. Cantwell, The general classification of three dimensional flow fields. Phys. Fluids A 2, 408–420 (1990)

    Article  MathSciNet  Google Scholar 

  21. E. Effelsberg, N. Peters, A composite model for the conserved scalar pdf. Combust. Flame 50, 351–360 (1983)

    Article  Google Scholar 

  22. J.P. Mellado, L. Wang, N. Peters, Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech 626, 333–365 (2009)

    Article  Google Scholar 

  23. M. Gampert, P. Schäfer, V. Narayanaswamy, N. Peters, Gradient trajectory analysis in a jet flow for turbulent combustion modeling. J. Turbul. 14, 147–164 (2013)

    Article  Google Scholar 

  24. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  25. H. Pitsch, N. Peters, A consistent flamelet formulation for nonpremixed combustion considering differential diffusion effects. Combust. Flame 114, 26–40 (1998)

    Article  Google Scholar 

  26. M. Gauding, F. Dietzsch, J. Goebbert, D. Thévenin, A. Abdelsamie, C. Hasse, Dissipation element analysis of a turbulent non-premixed jet flame. Phys. Fluids 29(085103) (2017)

    Article  Google Scholar 

  27. N. Peters, B. Kerschgens, G. Paczko, Super-Knock prediction using a refined theory of turbulence. SAE, 2013-01-1109 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Denker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denker, D., Attili, A., Pitsch, H. (2020). Dissipation Element Analysis of Inert and Reacting Turbulent Flows. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_2

Download citation

Publish with us

Policies and ethics