Skip to main content

Analysis of Turbulent Reacting Jets via Principal Component Analysis

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

The interpretation of high-dimensional data, like those obtained from Direct Numerical Simulations (DNS) of turbulent reacting flows, constitutes one of the biggest challenges in science and engineering. Although these simulations are a source of key information to advance the knowledge of turbulent combustion, as well as to develop and validate modeling approaches, the dimensionality of the data often limits the full opportunity to leverage the detailed and comprehensive information stored in datasets. The Principal Component Analysis (PCA) and its local formulation (LPCA) are widely used in many fields, including combustion. During the last 20 years, they have been used in combustion for the identification of low-dimensional manifolds, data analysis, and development of reduced-order models. Lower dimensional structures, either global or local, can provide better insights on the underlying physical phenomena, and lead to the formulation of high-fidelity models. This chapter aims to offer to the reader a comprehensive introduction of the PCA potential for data analysis, firstly introducing the main theoretical concepts, and then going through all the required computational steps by means of a MATLAB® code. Finally, the methodology is applied to data obtained from a DNS of a turbulent reacting non-premixed n-heptane jet in air. The latter can be regarded as an optimal case for data analysis because of the complex physics characterized by turbulence–chemistry interaction and soot formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bro, A.K. Smilde, Centering and scaling in component analysis. J. Chemom. 17(1), 16–33 (2003)

    Article  Google Scholar 

  2. R.A. van den Berg, H.C. Hoefsloot, J.A. Westerhuis, A.K. Smilde, M.J. van der Werf, Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7(1), 142 (2006)

    Article  Google Scholar 

  3. A. Parente, J.C. Sutherland, Principal component analysis of turbulent combustion data: data pre-processing and manifold sensitivity. Combust. Flame 160(2), 340–350 (2013)

    Article  Google Scholar 

  4. I. Jolliffe, Principal Component Analysis (Springer, Berlin, 2011)

    MATH  Google Scholar 

  5. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, Berlin, 2006)

    MATH  Google Scholar 

  6. A. Parente, J.C. Sutherland, B.B. Dally, L. Tognotti, P.J. Smith, Investigation of the MILD combustion regime via principal component analysis. Proc. Combust. Inst. 33(2), 3333–3341 (2011)

    Article  Google Scholar 

  7. A. Bellemans, G. Aversano, A. Coussement, A. Parente, Feature extraction and reduced-order modelling of nitrogen plasma models using principal component analysis. Comput. Chem. Eng. 12(115), 504–514 (2018)

    Article  Google Scholar 

  8. M.B. Richman, Rotation of principal components. J. Climatol. 6(3), 293–335 (1986)

    Article  MathSciNet  Google Scholar 

  9. H.F. Kaiser, The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187–200 (1958)

    Article  Google Scholar 

  10. N. Kambhatla, T.K. Leen, Dimension reduction by local principal component analysis. Neural Comput. 9(7), 1493–1516 (1997)

    Article  Google Scholar 

  11. A. Parente, J.C. Sutherland, L. Tognotti, P.J. Smith, Identification of low-dimensional manifolds in turbulent flames. Proc. Combust. Inst. 32(1), 1579–1586 (2009)

    Article  Google Scholar 

  12. A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161(7), 1849–1865 (2014)

    Article  Google Scholar 

  13. A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames. Combust. Flame 1(166), 192–202 (2016)

    Article  Google Scholar 

  14. A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Damkohler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35(2), 1215–1223 (2015)

    Article  Google Scholar 

  15. A. Attili, F. Bisetti, Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames. Comput. Fluids 15(84), 164–175 (2013)

    Article  MathSciNet  Google Scholar 

  16. G.P. McCabe, Principal variables. Technometrics 26(2), 137–144 (1984)

    Article  MathSciNet  Google Scholar 

  17. B.J. Isaac, A. Coussement, O. Gicquel, P.J. Smith, A. Parente, Reduced-order PCA models for chemical reacting flows. Combust. Flame 161(11), 2785–2800 (2014)

    Article  Google Scholar 

  18. B.J. Isaac, A. Parente, C. Galletti, J.N. Thornock, P.J. Smith, L. Tognotti, A novel methodology for chemical time scale evaluation with detailed chemical reaction kinetics. Energy Fuels 27(4), 2255–2265 (2013)

    Article  Google Scholar 

  19. A. Coussement, B.J. Isaac, O. Gicquel, A. Parente, Assessment of different chemistry reduction methods based on principal component analysis: comparison of the MG-PCA and score-PCA approaches. Combust. Flame 1(168), 83–97 (2016)

    Article  Google Scholar 

  20. A. Coussement, O. Gicquel, A. Parente, MG-local-PCA method for reduced order combustion modeling. Proc. Combust. Inst. 34(1), 1117–1123 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support of the Fonds National de la Recherche Scientifique (FRS-FNRS) through a FRIA fellowship.

A.A. and H.P. acknowledge funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program under grant agreement No 695747.

A.P. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program, grant agreement No 714605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe D’Alessio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Alessio, G., Attili, A., Cuoci, A., Pitsch, H., Parente, A. (2020). Analysis of Turbulent Reacting Jets via Principal Component Analysis. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_12

Download citation

Publish with us

Policies and ethics