Skip to main content

Abstract

Composites are finding increased use in structural high demanding and high added value applications in advanced industries. A wide diversity exists in terms of matrix type, which can be either polymeric or metallic and type of reinforcements (ceramic, polymeric or metallic). Several technologies have been used to produce these composites; among them, additive manufacturing (AM) is currently being applied. In structural applications, the presence of defects due to fabrication is of major concern, since it affects the performance of a component with negative impact, which can affect, ultimately, human lives. Thus, the detection of defects is highly important, not only surface defects but also barely visible defects. This chapter describes the main types of defects expected in composites produced by AM. The fundamentals of different non-destructive testing (NDT) techniques are briefly discussed, as well as the state of the art of numerical simulation for several NDT techniques. A multiparametric and customized inspection system was developed based on the combination of innovative techniques in modelling and testing. Experimental validation with eddy currents, ultrasounds, X-ray and thermography is presented and analysed, as well as integration of distinctive techniques and 3D scanning characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sbriglia, L.R., Baker, A.M., Thompson, J.M., Morgan, R.V., Wachtor, A.J., Bernardin, J.D.: Embedding sensors in FDM plastic parts during additive manufacturing. Conf. Proc. Soc. Exp. Mech. Ser. 10, 205–214 (2016). https://doi.org/10.1007/978-3-319-30249-2_17

    Article  Google Scholar 

  2. Borba, P.M., Tedesco, A., Lenz, D.M.: Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curauá fiber composites. Mater. Res. 17, 412–419 (2013). https://doi.org/10.1590/s1516-14392013005000203

    Article  Google Scholar 

  3. Guessasma, S., Belhabib, S., Nouri, H.: Significance of pore percolation to drive anisotropic effects of 3D printed polymers revealed with X-ray μ-tomography and finite element computation. Polym. (Guildf) 81, 29–36 (2015). https://doi.org/10.1016/j.polymer.2015.10.041

    Article  Google Scholar 

  4. Belhabib, S., Zhang, W., Guessasma, S., Nouri, H., Zhu, J.: Challenges of additive manufacturing technologies from an optimisation perspective. Int. J. Simul. Multidiscip. Des. Optim. 6, A9 (2016). https://doi.org/10.1051/smdo/2016001

    Article  Google Scholar 

  5. van Weeren, R., Agarwala, M., Jamalabad, V.R., Bandyophadyay, A., Vaidyanathan, R., Langrana, N., et al.: Quality of parts processed by fused deposition. Solid Free Fabr. 314–321 (1995)

    Google Scholar 

  6. Turner, B.N., Gold, S.A.: A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping J. 21, 250–261 (2015). https://doi.org/10.1108/rpj-02-2013-0017

  7. Simplify 3D 2019. https://www.simplify3d.com/. Accessed 14 Mar 2020

  8. Ueda M, Todoroki A, Hirano Y, Namiki M, Nakamura T, Jeong T-K, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 2016;6. https://doi.org/10.1038/srep23058

  9. Agarwala, M.K., Jamalabad, V.R., Langrana, N.A., Safari, Whalen, P.J., Danforth, S.C.: Structural quality of parts processed by fused deposition. Rapid Prototyping J. ISSN: 1355–2546 (1996)

    Google Scholar 

  10. ALL3DP. ALL3DP 2019. https://all3dp.com/. Accessed 21 Mar 2019

  11. Zikmund, T., Šalplachta, J., Zatočilová, A., Břínek, A., Pantělejev, L., Štěpánek, R., et al.: Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples. NDT E Int. 103, 111–118 (2019). https://doi.org/10.1016/j.ndteint.2019.02.008

    Article  Google Scholar 

  12. Jolly, M., Prabhakar, A., Sturzu, B., Hollstein, K., Singh, R., Thomas, S., et al.: Review of non-destructive testing (NDT) techniques and their applicability to thick walled composites. Procedia CIRP 38, 129–136 (2015). https://doi.org/10.1016/j.procir.2015.07.043

    Article  Google Scholar 

  13. Machado, M.A., Inácio, P.L., Santos, R.A., Gomes, A.F., Martins, A.P., Carvalho, M.S., et al.: Inspection of composite parts produced by additive manufacturing: air-coupled ultrasound and thermography. In: 58th Annual British Conference on Non-Destructive Testing. Telford, UK (2019)

    Google Scholar 

  14. Lei, L., Ferrarini, G., Bortolin, A., Cadelano, G., Bison, P., Maldague, X.: Thermography is cool: defect detection using liquid nitrogen as a stimulus. NDT E Int. 102, 137–143 (2019). https://doi.org/10.1016/j.ndteint.2018.11.012

    Article  Google Scholar 

  15. Ajay, K.: Best practice guide: non-destructive testing of composite materials. Natl. Compos. Netw. TWI 2010:1–48 (2010)

    Google Scholar 

  16. Machado, M.A., Rosado, L., Pedrosa, N., Vostner, A., Miranda, R.M., Piedade, M., et al.: Novel eddy current probes for pipes: application in austenitic round-in-square profiles of ITER. NDT E Int. 87, 111–118 (2017). https://doi.org/10.1016/j.ndteint.2017.02.001

    Article  Google Scholar 

  17. Antin, K.-N., Machado, M.A., Santos, T.G., Vilaça, P.: Evaluation of different non-destructive testing methods to detect imperfections in unidirectional carbon fiber composite ropes. J. Nondestruct. Eval. 38, 23 (2019). https://doi.org/10.1007/s10921-019-0564-y

    Article  Google Scholar 

  18. Machado, M.A., Antin, K.-N., Rosado, L.S., Vilaça, P., Santos, T.G.: Contactless high-speed eddy current inspection of unidirectional carbon fiber reinforced polymer. Compos. Part B Eng. 168, 226–235 (2019). https://doi.org/10.1016/j.compositesb.2018.12.021

    Article  Google Scholar 

  19. Machado, M.A., Antin, K.-N., Rosado, L.S., Vilaça, P., Santos, T.G.: High-speed inspection of UD CFRP composites. In: 58th Annual British Conference on Non-Destructive Testing. Telford, UK (2019)

    Google Scholar 

  20. Vaara, P., Leinonen, J.: Technology survey on NDT of carbon-fiber composites. Kemi-Tornio Univ. Appl. Sci. Ser. B Rep. 8, 46 (2012)

    Google Scholar 

  21. Dhanasekar, B., Ramamoorthy, B.: Digital speckle interferometry for assessment of surface roughness. Opt. Lasers Eng. 46, 272–280 (2008). https://doi.org/10.1016/j.optlaseng.2007.09.003

    Article  Google Scholar 

  22. Osten, W., Faridian, A., Gao, P., Körner, K., Naik, D., Pedrini, G., et al.: Recent advances in digital holography [invited]. Appl. Opt. 53, G44 (2014). https://doi.org/10.1364/AO.53.000G44

    Article  Google Scholar 

  23. Bianco, V., Memmolo, P., Paturzo, M., Finizio, A., Javidi, B., Ferraro, P.: Quasi noise-free digital holography. Light Sci. Appl. 5 (2016). https://doi.org/10.1038/lsa.2016.142

  24. Kreis, T.: Application of digital holography for nondestructive testing and metrology: a review. IEEE Trans. Ind. Inform. 12, 240–247 (2016). https://doi.org/10.1109/TII.2015.2482900

    Article  Google Scholar 

  25. Liu, P., Groves, R.M., Benedictus, R.: 3D monitoring of delamination growth in a wind turbine blade composite using optical coherence tomography. NDT E Int. 64, 52–58 (2014). https://doi.org/10.1016/j.ndteint.2014.03.003

    Article  Google Scholar 

  26. Stifter, D.: Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Appl. Phys. B 88, 337–357 (2007). https://doi.org/10.1007/s00340-007-2743-2

    Article  Google Scholar 

  27. Liu, P., Groves, R.M., Benedictus, R.: Signal processing in optical coherence tomography for aerospace material characterization. Opt. Eng. 52, 033201 (2013). https://doi.org/10.1117/1.oe.52.3.033201

    Article  Google Scholar 

  28. Santos, J., Farahi, F.: Handbook of Optical Sensors. CRC Press (2014). https://doi.org/10.1201/b17641

  29. Grattan, M.: Optical fiber sensor technology. Optoelectron. Imaging Sens. Ser. 4 (1999)

    Google Scholar 

  30. Avdelidis, N.P., Almond, D.P., Dobbinson, A., Hawtin, B.C., Ibarra-Castanedo, C., Maldague, X.: Aircraft composites assessment by means of transient thermal NDT. Prog. Aerosp. Sci. 40, 143–162 (2004). https://doi.org/10.1016/j.paerosci.2004.03.001

    Article  Google Scholar 

  31. Krishnapillai, M., Jones, R., Marshall, I.H., Bannister, M., Rajic, N.: Thermography as a tool for damage assessment. Compos. Struct. 67, 149–155 (2005). https://doi.org/10.1016/j.compstruct.2004.09.015

    Article  Google Scholar 

  32. Krishnapillai, M., Jones, R., Marshall, I.H., Bannister, M., Rajic, N.: NDTE using pulse thermography: numerical modeling of composite subsurface defects. Compos. Struct. 75, 241–249 (2006). https://doi.org/10.1016/j.compstruct.2006.04.079

    Article  Google Scholar 

  33. Waugh, R.C., Dulieu-Barton, J.M., Quinn, S.: Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies. NDT E Int. 66, 52–66 (2014). https://doi.org/10.1016/j.ndteint.2014.04.002

    Article  Google Scholar 

  34. Ghadermazi, K., Khozeimeh, M.A., Taheri-Behrooz, F., Safizadeh, M.S.: Delamination detection in glass–epoxy composites using step-phase thermography (SPT). Infrared Phys. Technol. 72, 204–209 (2015). https://doi.org/10.1016/j.infrared.2015.08.006

    Article  Google Scholar 

  35. Khodayar, F., Lopez, F., Ibarra-Castanedo, C., Maldague, X.: Optimization of the inspection of large composite materials using robotized line scan thermography. J Nondestruct. Eval. 36, 32 (2017). https://doi.org/10.1007/s10921-017-0412-x

    Article  Google Scholar 

  36. Peeters, J., Ibarra-Castanedo, C., Sfarra, S., Maldague, X., Dirckx, J.J.J., Steenackers, G.: Robust quantitative depth estimation on CFRP samples using active thermography inspection and numerical simulation updating. NDT E Int. 87, 119–123 (2017). https://doi.org/10.1016/j.ndteint.2017.02.003

    Article  Google Scholar 

  37. Peeters, J., Arroud, G., Ribbens, B., Dirckx, J.J.J., Steenackers, G.: Updating a finite element model to the real experimental setup by thermographic measurements and adaptive regression optimization. Mech. Syst. Signal Process. 64–65, 428–440 (2015). https://doi.org/10.1016/j.ymssp.2015.04.010

    Article  Google Scholar 

  38. Carvalho, M.S., Martins, A.P., Santos, T.G.: Simulation and validation of thermography inspection for components produced by additive manufacturing. Appl. Therm. Eng. 159, 113872 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113872

    Article  Google Scholar 

  39. Ke, W., Castaings, M., Bacon, C.: 3D finite element simulations of an air-coupled ultrasonic NDT system. Springer Proc. Phys. 128, 195–206 (2009). https://doi.org/10.1007/978-3-540-89105-5_17

    Article  Google Scholar 

  40. Zelenyak, A-M., Oster, R., Mosch, M., Jahnke, P., Sause, M.G.R.: Numerical modeling of ultrasonic inspection in fiber reinforced materials with explicit microstructure. In: 19th World Conference on Non-Destructive Testing 2016, vol. 2016, pp. 1–8

    Google Scholar 

  41. Zhang, B., Sun, X.C., Eaton, M.J., Marks, R., Clarke, A., Featherston, C.A., et al.: An integrated numerical model for investigating guided waves in impact-damaged composite laminates. Compos. Struct. 176, 945–960 (2017). https://doi.org/10.1016/j.compstruct.2017.06.034

    Article  Google Scholar 

  42. Yu, X., Ratassepp, M., Fan, Z.: Damage detection in quasi-isotropic composite bends using ultrasonic feature guided waves. Compos. Sci. Technol. 141, 120–129 (2017). https://doi.org/10.1016/j.compscitech.2017.01.011

    Article  Google Scholar 

  43. Yu, X., Ratassepp, M., Rajagopal, P., Fan, Z.: Anisotropic effects on ultrasonic guided waves propagation in composite bends. Ultrasonics 72, 95–105 (2016). https://doi.org/10.1016/j.ultras.2016.07.016

    Article  Google Scholar 

  44. Gresil, M., Poohsai, A., Chandarana, N.: Guided wave propagation and damage detection in composite pipes using piezoelectric sensors. Procedia Eng. 188, 148–155 (2017). https://doi.org/10.1016/j.proeng.2017.04.468

    Article  Google Scholar 

  45. Singh, R.K., Ramadas, C., Shetty, P.B., Satyanarayana, K.G.: Identification of delamination interface in composite laminates using scattering characteristics of lamb wave: numerical and experimental studies. Smart Mater. Struct. 26, 045017 (2017). https://doi.org/10.1088/1361-665X/aa623c

    Article  Google Scholar 

  46. Raišutis, R., Kažys, R., Žukauskas, E., Mažeika, L., Vladišauskas, A.: Application of ultrasonic guided waves for non-destructive testing of defective CFRP rods with multiple delaminations. NDT E Int. 43, 416–424 (2010). https://doi.org/10.1016/j.ndteint.2010.04.001

    Article  Google Scholar 

  47. Cacciola, M., Calcagno, S., Megali, G.: Eddy current modeling in composite materials. Piers Online 5, 591–595 (2009). https://doi.org/10.2529/PIERS090227075725

    Article  Google Scholar 

  48. Yin, W., Withers, P.J., Sharma, U., Peyton, A.J.: Noncontact characterization of carbon-fiber-reinforced plastics using multifrequency eddy current sensors. IEEE Trans. Instrum. Meas. 58, 738–43 (2009). https://doi.org/10.1109/tim.2008.2005072

  49. Cheng, J., Qiu, J., Takagi, T., Uchimoto, T., Hu, N.: Numerical analysis of correlation between fibre orientation and eddy current testing signals of carbon-fibre reinforced polymer composites. Int. J. Appl. Electromagn. Mech. 39, 251–259 (2012). https://doi.org/10.3233/JAE-2012-1468

    Article  Google Scholar 

  50. Menana, H., Feliachi, M.: An integro-differential model for 3-D eddy current computation in carbon fiber reinforced polymer composites. IEEE Trans. Magn. 47, 756–763 (2011). https://doi.org/10.1109/TMAG.2010.2102770

    Article  Google Scholar 

  51. Burke, S.K.: Eddy-current induction in a uniaxially anisotropic plate. J. Appl. Phys. 68, 3080–3090 (1990). https://doi.org/10.1063/1.347171

    Article  Google Scholar 

  52. Yang, S., Gu, L., Gibson, R.F.: Nondestructive detection of weak joints in adhesively bonded composite structures. Compos. Struct. 51, 63–71 (2001). https://doi.org/10.1016/S0263-8223(00)00125-2

    Article  Google Scholar 

  53. Mabrouki, F., Thomas, M., Genest, M., Fahr, A.: Numerical modeling of vibrothermography based on plastic deformation. NDT E Int. 43, 476–483 (2010). https://doi.org/10.1016/j.ndteint.2010.05.002

    Article  Google Scholar 

  54. Mian, A., Newaz, G., Han, X., Mahmood, T., Saha, C.: Response of sub-surface fatigue damage under sonic load—a computational study. Compos. Sci. Technol. 64, 1115–1122 (2004). https://doi.org/10.1016/j.compscitech.2003.08.009

    Article  Google Scholar 

  55. Pieczonka, L.J., Staszewski, W.J., Aymerich, F., Uhl, T., Szwedo, M.: Numerical simulations for impact damage detection in composites using vibrothermography. IOP Conf. Ser. Mater. Sci. Eng. 10, 012062 (2010). https://doi.org/10.1088/1757-899X/10/1/012062

    Article  Google Scholar 

  56. Pastuszak, P.D.: Characterization of defects in curved composite structures using active infrared thermography. Procedia Eng. 157, 325–332 (2016). https://doi.org/10.1016/j.proeng.2016.08.373

    Article  Google Scholar 

  57. Ke, W., Castaings, M., Bacon, C.: 3D finite element simulations of an air-coupled ultrasonic NDT system. NDT E Int. 42, 524–533 (2009). https://doi.org/10.1016/j.ndteint.2009.03.002

    Article  Google Scholar 

  58. Nascimento, M., Novais, S., Ding, M., Ferreira, M.S., Koch, S., Passerini, S., Pinto, J.L.: Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries. J. Power Sources 410–411, 1–9 (2019). https://doi.org/10.1016/j.jpowsour.2018.10.096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Telmo G. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, T.G. et al. (2020). Reliability and NDT Methods. In: Torres Marques, A., Esteves, S., Pereira, J., Oliveira, L. (eds) Additive Manufacturing Hybrid Processes for Composites Systems. Advanced Structured Materials, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-44522-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44522-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44521-8

  • Online ISBN: 978-3-030-44522-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics