Skip to main content

Abstract

Recent production demand for more flexibility has driven new technologies to arise. From the early days of rapid prototyping, additive manufacturing has grown to a maturity level that allows it to be competitive with conventional manufacturing methods under certain circumstances. Always as a hybrid approach, firstly additive, and subsequently subtractive, parts produced with high-performance materials can sometimes offset their metal counterparts in a strength-to-weight ratio perspective. System design in these cases needs to take into account the process potential, through design capabilities, and the consequent execution of the parts, highly optimized. In this chapter, an introduction to design for AM is showcased, as well as system architectures to exploit design methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prakash, K.S., Nancharaih, T., Rao, V.V.S.: Additive manufacturing techniques in manufacturing—an overview. Mater. Today Proc. 5, 3873–3882 (2018). https://doi.org/10.1016/j.matpr.2017.11.642

    Article  Google Scholar 

  2. Parandoush, P., Lin, D.: A review on additive manufacturing of polymer-fiber composites. Compos. Struct. 182, 36–53 (2017). https://doi.org/10.1016/j.compstruct.2017.08.088

    Article  Google Scholar 

  3. DEO: Metal 3D Printing Processes—Metal Extrusion FFF/FDM (2018)

    Google Scholar 

  4. Johansson, M., Sandberg, R.: How Additive Manufacturing Can Support the Assembly System Design Process. Jönköping University (2016)

    Google Scholar 

  5. Wong, K.V., Hernandez, A.: A review of additive manufacturing. ISRN Mech. Eng. 2012 (2012). https://doi.org/10.5402/2012/208760

  6. Mahindru, D.V., Mahendru, P., Mahindru, V., Mahendru, P.: Review of rapid prototyping-technology for the future. Glob. J. Comput. Sci. Technol. Graph. Vis. 13, 27–38 (2013). ISSN: 0975-4172

    Google Scholar 

  7. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies. Springer, London (2014)

    Google Scholar 

  8. U.S. Department of Energy: DOE quadrennial technology review 2015: technology assessment on additive manufacturing. In: Quadrennial Technology Review, p. 36. U.S. Department of Energy (2015)

    Google Scholar 

  9. Nagel, J.K.S., Liou, F.W.: Hybrid manufacturing system modeling and development. In: Aziz, F.A. (ed.) Manufacturing System, pp. 223–246. InTech (2012)

    Google Scholar 

  10. Stern, M.L.: Aligning Design and Development Processes for Additive Manufacturing. Massachusetts Institute of Technology (2015)

    Google Scholar 

  11. Hopkinson, N., Dickens, P.: Analysis of rapid manufacturing—using layer manufacturing processes for production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 217, 31–40 (2003). https://doi.org/10.1243/095440603762554596

    Article  Google Scholar 

  12. Atzeni, E., Iuliano, L., Minetola, P., Salmi, A.: Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyp. J. 16, 308–317 (2010). https://doi.org/10.1108/13552541011065704

    Article  Google Scholar 

  13. Kover, A.: Transformation in 3D: How a Walnut-Sized Part Changed the Way GE Aviation Builds Jet Engines

    Google Scholar 

  14. Renishaw, P.L.C.: InfiniAM Spectral—Energy Input and Melt Pool Emissions Monitoring for AM Systems, pp. 1–5 (2018)

    Google Scholar 

  15. Purcell, A.T., Gero, J.S.: Design and other types of fixation. Des. Stud. 17, 363–383 (1996). https://doi.org/10.1016/S0142-694X(96)00023-3

    Article  Google Scholar 

  16. Amend, M.: Expanding the Design Space: Forging the Transition from 3D Printing to Additive Manufacturing. University of Washington (2016)

    Google Scholar 

  17. Saunders, M.: DfAM strategy—create ‘design space’ for maximum AM impact, No. 44, pp. 1–7 (2016)

    Google Scholar 

  18. Garber, T., Goldenberg, J., Libai, B., Muller, E.: Towards a sustainable and economic selection of part candidates for additive manufacturing. Mark. Sci. 23, 419–428 (2004)

    Article  Google Scholar 

  19. Saunders, M., Am, S.: DfAM Essentials—Print Parts Efficiently and Effectively (2016)

    Google Scholar 

  20. Design Guidelines for ABS | Fused Deposition Modeling (FDM) at Materialise. Materialise (2018)

    Google Scholar 

  21. Hudson, B.: How to Design Parts for Metal 3D Printing. 3D Hubs (2018)

    Google Scholar 

  22. Oropallo, W., Piegl, L.A.: Ten challenges in 3D printing. Eng. Comput. 32, 135–148 (2016). https://doi.org/10.1007/s00366-015-0407-0

    Article  Google Scholar 

  23. Smith, R.: Laser Sintering vs Laser Melting. Additiva (2017)

    Google Scholar 

  24. Kim, G.D., Oh, Y.T.: A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222, 201–215 (2008). https://doi.org/10.1243/09544054JEM724

    Article  Google Scholar 

  25. Stavropoulos, P., Foteinopoulos, P.: Modelling of additive manufacturing processes: a review and classification. Manuf. Rev. 5, 2 (2018). https://doi.org/10.1051/mfreview/2017014. M4—Citavi

    Article  Google Scholar 

  26. Grutle, Ø.K.: 5-Axis 3D Printer. University of Oslo (2015)

    Google Scholar 

  27. Velu, R., Vaheed, N., Raspall, F.: Design and Robotic Fabrication of 3D Printed Moulds for Composites (2018)

    Google Scholar 

  28. Ding, Y., Warton, J., Kovacevic, R.: Development of sensing and control system for robotized laser-based direct metal addition system. Addit. Manuf. 10, 24–35 (2016). https://doi.org/10.1016/j.rcim.2015.09.002

  29. HAGE3D 3D Printer 175X—HAGE3D. HAGE3D

    Google Scholar 

  30. VSHAPER 5-AXIS MACHINE—3D Printing Solutions for Industries—VSHAPER. Vshaper

    Google Scholar 

  31. Wu, C., Dai, C., Fang, G., Liu, Y.J., Wang, C.C.L.: RoboFDM: a robotic system for support-free fabrication using FDM. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1175–1180 (2017). https://doi.org/10.1109/ICRA.2017.7989140

  32. Ding, D., Pan, Z., Cuiuri, D., Li, H., Larkin, N., van Duin, S.: Automatic multi-direction slicing algorithms for wire based additive manufacturing. Robot. Comput. Integr. Manuf. 37, 139–150 (2016). https://doi.org/10.1016/j.rcim.2015.09.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Miguel Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L., Esteves, S., Tenreiro, A.F., Matos, J.R., Sobral, J., Pereira, J.P. (2020). Systems Design for FRP Hybrid AM. In: Torres Marques, A., Esteves, S., Pereira, J., Oliveira, L. (eds) Additive Manufacturing Hybrid Processes for Composites Systems. Advanced Structured Materials, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-44522-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44522-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44521-8

  • Online ISBN: 978-3-030-44522-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics