Skip to main content

Abstract

This chapter focuses on new compositions of thermoplastic matrices and reinforcements to process by fused deposition modelling (FDM). The available materials for this additive manufacturing (AM) technique are generally limited to PLA—polylactic acid, ABS—acrylonitrile butadiene styrene and PA—polyamide (NYLON®) with temperature gradients and mechanical behaviours that are not suited for high-performance applications, such as aeronautics and automotive sector. In this work, an intensive research was made in order to evaluate mechanical, thermal and rheological properties considered important for 3D printing of commercial filaments. Results aided in the selection of high-performance reinforced materials for AM. Advanced polymers, such as PEEK—polyether ether ketone and PA66—polyamide 66, were the matrices chosen to produce high service nanocomposite formulations, each with varying amounts of multi-wall carbon nanotubes (MWCNTs). The resulting feedstock materials were characterized using the same techniques as the commercial filaments. Preliminary tests with printed parts of these composites were made in pursuance of their optimal printing parameters to undergo an experimental hybrid system (EHS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wohlers, T.: Wohlers Report 2011: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress Report. Wohlers Associates, Inc., 270 (2011). ISBN 978-0-9913332-0-2

    Google Scholar 

  2. Boparai, K.S., Singh, R., Singh, H.: Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyp. J. Emerald Group Publishing Ltd. (2016). https://doi.org/10.1108/rpj-04-2014-0048

  3. Mohan, N., Senthil, P., Vinodh, S., Jayanth, N.: A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. Taylor and Francis Ltd. (2017 Jan 2). https://doi.org/10.1080/17452759.2016.1274490

  4. Kishore, V., Chen, X., Ajinjeru, C., Hassen, A.A., Lindahl, J., Failla, J., … Duty, C.: Additive manufacturing of high performance semicrystalline thermoplastics and their composites. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference (November), 906–915 (2016)

    Google Scholar 

  5. Bakrani Balani, S., Chabert, F., Nassiet, V., Cantarel, A.: Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 25, 112–121 (2019). https://doi.org/10.1016/j.addma.2018.10.012

    Article  Google Scholar 

  6. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 1–459. Springer US (2010). https://doi.org/10.1007/978-1-4419-1120-9

  7. Ward, I.M., Sweeney, J.: Mechanical Properties of Solid Polymers, 3rd edn. Wiley, New York (2012). https://doi.org/10.1002/9781119967125

  8. Turner, B., Gold, S.A.: A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 21(3), 250–261 (2015). https://doi.org/10.1108/rpj-02-2013-0017

  9. D’Amico, A.A., Debaie, A., Peterson, A.M.: Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyp. J. 23(5), 943–953 (2017). https://doi.org/10.1108/rpj-05-2016-077

    Article  Google Scholar 

  10. Prajapati, H., Ravoori, D., Woods, R.L., Jain, A.: Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Addit. Manuf. 21, 84–90 (2018). https://doi.org/10.1016/j.addma.2018.02.019

    Article  Google Scholar 

  11. Sun, Q., Rizvi, G.M., Bellehumeur, C.T., Gu, P.: Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 14(2), 72–80 (2008). https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  12. Ahn, S.H., Montero, M., Odell, D., Roundy, S., Wright, P.K.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. Journal 8(4), 248–257 (2002). https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  13. Abdullah, A.M., Rahim, T.N.A.T., Mohamad, D., Akil, H.M., Rajion, Z.A.: Mechanical and physical properties of highly ZrO2/β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Mater. Lett. 189, 307–309 (2017). https://doi.org/10.1016/j.matlet.2016.11.052

    Article  Google Scholar 

  14. Torres, J., Cotelo, J., Karl, J., Gordon, A.P.: Mechanical property optimization of FDM PLA in shear with multiple objectives. JOM 67(5), 1183–1193 (2015). https://doi.org/10.1007/s11837-015-1367-y

    Article  Google Scholar 

  15. Benwood, C., Anstey, A., Andrzejewski, J., Misra, M., Mohanty, A.K.: Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly(lactic acid). ACS Omega 3(4), 4400–4411 (2018). https://doi.org/10.1021/acsomega.8b00129

    Article  Google Scholar 

  16. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3(1), 42–53 (2015). https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  17. Turner, B.N., Strong, R., Gold, S.A.: A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. Emerald Group Publishing Ltd. (2014). https://doi.org/10.1108/rpj-01-2013-0012

    Google Scholar 

  18. Blundell, D.J., Osborn, B.N.: The morphology of poly(aryl-ether-ether-ketone). Polymer 24(8), 953–958 (1983). https://doi.org/10.1016/0032-3861(83)90144-1

    Article  Google Scholar 

  19. Millot, C., Fillot, L.A., Lame, O., Sotta, P., Seguela, R.: Assessment of polyamide-6 crystallinity by DSC: temperature dependence of the melting enthalpy. J. Therm. Anal. Calorim. 122(1), 307–314 (2015). https://doi.org/10.1007/s10973-015-4670-5

    Article  Google Scholar 

  20. Ellis, G., Naffakh, M., Marco, C., Hendra, P.J.: Fourier transform Raman spectroscopy in the study of technological polymers Part 1: poly(aryl ether ketones), their composites and blends. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(13), 2279–2294 (1997). https://doi.org/10.1016/s1386-1425(97)00168-6

    Article  Google Scholar 

  21. Yang, X., Li, Q., Chen, Z., Han, H.: Fabrication and thermal stability studies of polyamide 66 containing triaryl phosphine oxide. Bull. Mater. Sci. 32(4), 375–380 (2009). https://doi.org/10.1007/s12034-009-0054-4

    Article  Google Scholar 

  22. Saritha, A., Joseph, K.: Effect of nano clay on the constrained polymer volume of chlorobutyl rubber nanocomposites. Polym. Compos. 36(11), 2135–2139 (2015). https://doi.org/10.1002/pc.23124

    Article  Google Scholar 

  23. Grattan, M.: Optical Fiber Sensor Technology, vol. 4. Optoelectronics, Imaging and Sensing Series 4 (1999)

    Google Scholar 

  24. Rao, Y.: In-fibre Bragg grating sensors. Meas. Sci. Technol. 8, 355 (1997). https://doi.org/10.1088/0957-0233/8/4/002

    Article  Google Scholar 

  25. Coviello, G., Finazzi, V., Villatoro, J., Pruneri, V.: Thermally stabilized PCF-based sensor for temperature measurements up to 1000 °C. Opt. Express 17, 21551–21559 (2009). https://doi.org/10.1364/oe.17.021551

    Article  Google Scholar 

  26. Ferreira, M.S., Roriz, P., Bierlich, J., Kobelke, J., Wondraczek, K., Aichele, C., Schuster K., Santos, J.L., Frazão, O.: Fabry-Perot cavity based on silica tube for strain sensing at high temperatures. Opt. Express 23, 16063–16070 (2015). https://doi.org/10.1364/oe.23.016063

  27. Kim, J.S., Lee, J.Y., Lee, K.T., Kim, H.S., Ahn, S.H.: Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite. J. Mech. Sci. Technol. 27(10), 3123–3129 (2013). https://doi.org/10.1007/s12206-013-0832-1

    Article  Google Scholar 

  28. Wang, W., Rodrigue, H., Ahn, S.H. (2016). Deployable soft composite structures. Sci. Rep. 6:20869, 10 pgs. https://doi.org/10.1038/srep20869

  29. Han, M.W., Rodrigue, H., Cho, S., Song, S.H., Wang, W., Chu, W.S., Ahn, S.H.: Woven type smart soft composite for soft morphing car spoiler. Compos. B Eng. 86(1), 285–298 (2016). https://doi.org/10.1016/j.compositesb.2015.10.009

    Article  Google Scholar 

  30. Rodrigue, H., Wang, W., Kim, D.R., Ahn, S.H.: Curved shape memory alloy-based soft actuators and application to soft gripper. Compos. Struct. 176, 398–406 (2017). https://doi.org/10.1016/j.compstruct.2017.05.056

    Article  Google Scholar 

  31. Braz Fernandes, F.M., Camacho, E., Rodrigues, P.F., Inácio, P., Santos, T.G., Schell, N.: In situ structural characterization of functionally graded Ni–Ti shape memory alloy during tensile loading. Shape Memory Superelasticity 5(4), 457–467 (2019). https://doi.org/10.1007/s40830-019-00237-2

    Article  Google Scholar 

  32. Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Häusermann, D.: Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Pedro Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nunes, J.P. et al. (2020). New Material Concepts. In: Torres Marques, A., Esteves, S., Pereira, J., Oliveira, L. (eds) Additive Manufacturing Hybrid Processes for Composites Systems. Advanced Structured Materials, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-44522-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44522-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44521-8

  • Online ISBN: 978-3-030-44522-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics