Skip to main content

Abstract

This chapter aims to present new design and modelling methods for hybrid additive manufacturing (AM) technologies with thermoplastic composites, regarding material processability, functional requirements and manufacturing specificities of additive, subtractive and hybrid operation modes. Multifunctional and graded features are presented since the potential of the design and modelling approaches is enhanced in the development of these innovative features. Moreover, a sustainability assessment in AM-related processes covering the product and process life cycle (LC) performance, economic, environmental and social assessments, as well as the main AM challenges and opportunities, will be in-depth discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen, D.W.: Design for additive manufacturing: a method to explore unexplored regions of the design space. In: 18th, Solid Freeform Fabrication Symposium, pp. 402–415 (2007)

    Google Scholar 

  2. Lauwers, B., Klocke, F., Klink, A., et al.: Hybrid processes in manufacturing. CIRP Ann. 63, 561–583 (2014). https://doi.org/10.1016/J.CIRP.2014.05.003

    Article  Google Scholar 

  3. Merklein, M., Junker, D., Schaub, A., Neubauer, F.: Hybrid additive manufacturing technologies—an analysis regarding potentials and applications. Phys. Procedia 83, 549–559 (2016). https://doi.org/10.1016/J.PHPRO.2016.08.057

    Article  Google Scholar 

  4. Grzesik, W.: Hybrid additive and subtractive manufacturing processes and systems: a review. J. Mach. Eng. 18, 5–24 (2018). https://doi.org/10.5604/01.3001.0012.7629

    Article  Google Scholar 

  5. Lorenz, K.A., Jones, J.B., Wimpenny, D.I., Jackson, M.R.: A review of hybrid manufacturing. In: Solid Freedom Fabrication Conference Proceedings, vol. 53 (2015)

    Google Scholar 

  6. Zhu, Z., Dhokia, V.G., Nassehi, A., Newman, S.T.: A review of hybrid manufacturing processes—state of the art and future perspectives. Int. J. Comput. Integr. Manuf. 26, 596–615 (2013). https://doi.org/10.1080/0951192X.2012.749530

    Article  Google Scholar 

  7. Flynn, J.M., Shokrani, A., Newman, S.T., Dhokia, V.: Hybrid additive and subtractive machine tools—research and industrial developments. Int. J. Mach. Tools Manuf. 101, 79–101 (2016). https://doi.org/10.1016/J.IJMACHTOOLS.2015.11.007

    Article  Google Scholar 

  8. Lee, W., Wei, C., Chung, S.-C.: Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining. J. Mater. Process. Technol. 214, 2366–2374 (2014). https://doi.org/10.1016/J.JMATPROTEC.2014.05.004

    Article  Google Scholar 

  9. Yasa, E., Kruth, J.-P., Deckers, J.: Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann. 60, 263–266 (2011). https://doi.org/10.1016/J.CIRP.2011.03.063

    Article  Google Scholar 

  10. ASTM: ASTM F2792—Standard Terminology for Additive Manufacturing Technologies (2015)

    Google Scholar 

  11. Cortina, M., Arrizubieta, J., Ruiz, J., et al.: Latest developments in industrial hybrid machine tools that combine additive and subtractive operations. Materials (Basel) 11, 2583 (2018). https://doi.org/10.3390/ma11122583

    Article  Google Scholar 

  12. Li, L., Haghighi, A., Yang, Y.: A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J. Manuf. Process. 33, 150–160 (2018). https://doi.org/10.1016/J.JMAPRO.2018.05.008

    Article  Google Scholar 

  13. Amanullah, A.N.M., Murshiduzzaman, Saleh T., Khan, R.: Design and development of a hybrid machine combining rapid prototyping and CNC milling operation. Procedia Eng. 184, 163–170 (2017). https://doi.org/10.1016/J.PROENG.2017.04.081

    Article  Google Scholar 

  14. Ambriz, S., Coronel, J., Zinniel, B., et al.: Material handling and registration for an additive manufacturing-based hybrid system. J. Manuf. Syst. 45, 17–27 (2017). https://doi.org/10.1016/J.JMSY.2017.07.003

    Article  Google Scholar 

  15. Vispute, M., Kumar, N., Jain, P.K., et al.: On the surface finish improvement in hybrid additive subtractive manufacturing process. Lecture Notes in Mechanical Engineering, pp. 443–449. Springer, Singapore (2019)

    Google Scholar 

  16. Leite, M., Cunha, J., Sardinha, M., et al.: Tool path generation for hybrid additive manufacturing. In: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference (2018)

    Google Scholar 

  17. Hu, Z., Lee, K., Hur, J.: Determination of optimal build orientation for hybrid rapid-prototyping. J. Mater. Process. Technol. 130–131, 378–383 (2002). https://doi.org/10.1016/S0924-0136(02)00727-6

    Article  Google Scholar 

  18. Ruan, J., Eiamsa-ard, K., Liou, F.W.: Automatic process planning and toolpath generation of a multiaxis hybrid manufacturing system. J. Manuf. Process. 7, 57–68 (2005). https://doi.org/10.1016/S1526-6125(05)70082-7

    Article  Google Scholar 

  19. Boschetto, A., Bottini, L., Veniali, F.: Finishing of fused deposition modeling parts by CNC machining. Robot. Comput. Integr. Manuf. 41, 92–101 (2016). https://doi.org/10.1016/J.RCIM.2016.03.004

    Article  Google Scholar 

  20. Tomal, A.N.M.A., Saleh, T., Khan, M.R.: Improvement of dimensional accuracy of 3-D printed parts using an additive/subtractive based hybrid prototyping approach. IOP Conf. Ser. Mater. Sci. Eng. 260, 012031 (2017). https://doi.org/10.1088/1757-899X/260/1/012031

    Article  Google Scholar 

  21. Ituarte, I.F., Chekurov, S., Salmi, M., et al.: Post-processing opportunities of professional and consumer grade 3D printing equipment: a comparative study. Int. J. Rapid Manuf. 5, 58 (2015). https://doi.org/10.1504/IJRAPIDM.2015.073548

    Article  Google Scholar 

  22. Kobryn, P.A., Ontko, N.R., Perkins, L.P., Tiley, J.S.: Additive manufacturing of aerospace alloys for aircraft structures. In: Cost Effective Manufacture via Net-Shape Processing, pp. 3-1–3-14 (2006)

    Google Scholar 

  23. Panesar, A., Brackett, D., Wildman, I.A.R., Hague, R.: Design optimization for multifunctional 3D printed structures with embedded functional systems. In: 11th World Congress on Structural and Multidisciplinary Optimisation (2015)

    Google Scholar 

  24. Vaithilingam, J., Simonelli, M., Saleh, E., et al.: Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures. ACS Appl. Mater. Interfaces 9, 6560–6570 (2017). https://doi.org/10.1021/acsami.6b14787

    Article  Google Scholar 

  25. Panesar, A., Brackett, D., Ashcroft, I., et al.: Design framework for multifunctional additive manufacturing: placement and routing of three-dimensional printed circuit volumes. J. Mech. Des. 137, 111414 (2015). https://doi.org/10.1115/1.4030996

    Article  Google Scholar 

  26. Farahani, R.D., Dubé, M., Therriault, D.: Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016). https://doi.org/10.1002/adma.201506215

    Article  Google Scholar 

  27. Rodriguez, J.N., Zhu, C., Duoss, E.B., et al.: Shape-morphing composites with designed micro-architectures. Sci. Rep. 6, 27933 (2016). https://doi.org/10.1038/srep27933

    Article  Google Scholar 

  28. Gonzalez, P., Schwarzer, E., Scheithauer, U., et al.: Additive manufacturing of functionally graded ceramic materials by stereolithography. J. Vis. Exp. (2019). https://doi.org/10.3791/57943

    Article  Google Scholar 

  29. Li, W., Martin, A.J., Kroehler, B., Henderson, A., Huang, T., et al.: Fabricating functionally graded materials by ceramic on-demand extrusion with dynamic mixing. In: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1087–1099 (2018)

    Google Scholar 

  30. Pei, E., Loh, G.H., Harrison, D., et al.: A study of 4D printing and functionally graded additive manufacturing. Assem. Autom. 37, 147–153 (2017). https://doi.org/10.1108/AA-01-2017-012

    Article  Google Scholar 

  31. Toursangsaraki, M.: A review of multi-material and composite parts production by modified additive manufacturing methods. Mater. Res. (2018)

    Google Scholar 

  32. Kshitij, L.: Clearance Analysis of 3D Printed Assemblies Using Fused Filament Extrusion. Rochester Institute of Technology (2016)

    Google Scholar 

  33. Mutha, A.A.: How to select a 3D printer under 100,000—developments for future. Electron You 4 (2015)

    Google Scholar 

  34. Lee, K.G., Park, K.J., Seok, S., et al.: 3D printed modules for integrated microfluidic devices. RSC Adv. 4, 32876–32880 (2014). https://doi.org/10.1039/C4RA05072J

    Article  Google Scholar 

  35. Cheung, K.C., Tachi, T., Calisch, S., Miura, K.: Origami interleaved tube cellular materials. Smart Mater. Struct. 23, 094012 (2014). https://doi.org/10.1088/0964-1726/23/9/094012

    Article  Google Scholar 

  36. Wu, S.-Y., Yang, C., Hsu, W., Lin, L.: 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsyst. Nanoeng. 1, 15013 (2015). https://doi.org/10.1038/micronano.2015.13

    Article  Google Scholar 

  37. Aguilera, E., Ramos, J., Espalin, D., et al.: 3D printing of electro mechanical systems. In: 24th Internal SFF Symposium—An Additive Manufacturing Conference, pp. 950–961 (2013)

    Google Scholar 

  38. Naboni, R., Mirante, L.: Metamaterial computation and fabrication of auxetic patterns for architecture. Anais do XIX Congresso da Sociedade Ibero-americana de Gráfica Digital 2015, pp. 129–136. Editora Edgard Blücher, São Paulo (2015)

    Google Scholar 

  39. Ingrole, A., Hao, A., Liang, R.: Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement. Mater. Des. 117, 72–83 (2017). https://doi.org/10.1016/J.MATDES.2016.12.067

    Article  Google Scholar 

  40. Jiang, W., Ma, H., Feng, M., et al.: Origami-inspired building block and parametric design for mechanical metamaterials. J. Phys. D Appl. Phys. 49, 315302 (2016). https://doi.org/10.1088/0022-3727/49/31/315302

    Article  Google Scholar 

  41. Enoch, A., Vijayakumar, S.: Rapid manufacture of novel variable impedance robots. J. Mech. Robot. 8, 011003 (2015). https://doi.org/10.1115/1.4030388

    Article  Google Scholar 

  42. Shemelya, C., Cedillos, F., Aguilera, E., et al.: Encapsulated copper wire and copper mesh capacitive sensing for 3-D printing applications. IEEE Sens. J. 15, 1280–1286 (2015). https://doi.org/10.1109/JSEN.2014.2356973

    Article  Google Scholar 

  43. Liang, M., Shemelya, C., MacDonald, E., et al.: 3-D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique. IEEE Antennas Wirel. Propag. Lett. 14, 1346–1349 (2015). https://doi.org/10.1109/LAWP.2015.2405054

    Article  Google Scholar 

  44. Niese, B., Amend, P., Roth, S., Schmidt, M.: Laser-based generation of conductive circuits on additive manufactured thermoplastic substrates. Phys. Procedia 83, 954–963 (2016). https://doi.org/10.1016/J.PHPRO.2016.08.100

    Article  Google Scholar 

  45. Giannatsis, J., Vassilakos, A., Canellidis, V., Dedoussis, V.: Fabrication of graded structures by extrusion 3D Printing. In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 175–179. IEEE (2015)

    Google Scholar 

  46. Khoda, A.K.M.B., Koc, B.: Functionally heterogeneous porous scaffold design for tissue engineering. Comput. Des. 45, 1276–1293 (2013). https://doi.org/10.1016/J.CAD.2013.05.005

    Article  Google Scholar 

  47. Rumpf, R.C., Garcia, C.R., Tsang, H.H., et al.: Electromagnetic isolation of a microstrip by embedding in a spatially variant anisotropic metamaterial. Prog. Electromagn. Res. 142, 243–260 (2013). https://doi.org/10.2528/PIER13070308

    Article  Google Scholar 

  48. Rumpf, R.C., Pazos, J., Garcia, C.R., et al.: 3D printed lattices with spatially variant self-collimation. Prog. Electromagn. Res. 139, 1–14 (2013). https://doi.org/10.2528/PIER13030507

    Article  Google Scholar 

  49. Zhang, S., Vardaxoglou, Y.J.C., Whittow, W.G., Mittra, R.: 3D-printed flat lens for microwave applications. In: Loughborough Antennas & Propagation Conference (2015)

    Google Scholar 

  50. Boccaccio, A., Uva, A.E., Fiorentino, M., et al.: Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE 11, e0146935 (2016). https://doi.org/10.1371/journal.pone.0146935

    Article  Google Scholar 

  51. Afshar, M., Anaraki, A.P., Montazerian, H., Kadkhodapour, J.: Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. J. Mech. Behav. Biomed. Mater. 62, 481–494 (2016). https://doi.org/10.1016/J.JMBBM.2016.05.027

    Article  Google Scholar 

  52. Larimore, Z., Jensen, S., Parsons, P., et al.: Use of space-filling curves for additive manufacturing of three dimensionally varying graded dielectric structures using fused deposition modeling. Addit. Manuf. 15, 48–56 (2017). https://doi.org/10.1016/J.ADDMA.2017.03.002

    Article  Google Scholar 

  53. Lester, B.T., Baxevanis, T., Chemisky, Y., Lagoudas, D.C.: Review and perspectives: shape memory alloy composite systems. Acta Mech. 226, 3907–3960 (2015). https://doi.org/10.1007/s00707-015-1433-0

    Article  Google Scholar 

  54. Paine, J.S.N., Rogers, C.A., Smith, R.A.: Adaptive composite materials with shape memory alloy actuators for cylinders and pressure vessels. J. Intell. Mater. Syst. Struct. 6, 210–219 (1995). https://doi.org/10.1177/1045389X9500600208

    Article  Google Scholar 

  55. Vokoun, D., Sysel, P., Heller, L., et al.: NiTi-polyimide composites prepared using thermal imidization process. J. Mater. Eng. Perform. 25, 1993–1999 (2016). https://doi.org/10.1007/s11665-016-2019-2

    Article  Google Scholar 

  56. Kim, J.-S., Lee, J.-Y., Lee, K.-T., et al.: Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite. J. Mech. Sci. Technol. 27, 3123–3129 (2013). https://doi.org/10.1007/s12206-013-0832-1

    Article  Google Scholar 

  57. Richter, C., Schmülling, S., Ehrmann, A., Finsterbusch, K.: FDM printing of 3D forms with embedded fibrous materials. In: Design, Manufacturing and Mechatronics, pp. 961–969. World Scientific, Wuhan (2015)

    Google Scholar 

  58. Wang, W., Rodrigue, H., Kim, H.-I., et al.: Soft composite hinge actuator and application to compliant robotic gripper. Compos. Part B Eng. 98, 397–405 (2016). https://doi.org/10.1016/J.COMPOSITESB.2016.05.030

    Article  Google Scholar 

  59. Usman, M.: Development and analysis of different density auxetic cellular structures. Int. J. Recent Innov. Trends Comput. Commun. 3, 27–32 (2015). https://doi.org/10.17762/ijritcc2321-8169.150107

  60. Wasserfall, F., Ahlers, D., Hendrich, N., Zhang, J.: 3D-printable electronics-integration of SMD placement and wiring into the slicing process for FDM fabrication. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, pp. 1826–1837 (2016)

    Google Scholar 

  61. Espalin, D., Muse, D.W., MacDonald, E., Wicker, R.B.: 3D printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72, 963–978 (2014). https://doi.org/10.1007/s00170-014-5717-7

    Article  Google Scholar 

  62. Naboni, R., Mirante, L.: Computational design and simulation of bending-active auxetic structures. Gestão Tecnol. Proj. 11, 59 (2016). https://doi.org/10.11606/gtp.v11i2.118141

  63. Naboni, R., Pezzi, S.S.: Embedding auxetic properties in designing active-bending gridshells. Blucher Design Proceedings, pp. 720–726. Editora Blucher, São Paulo (2016)

    Google Scholar 

  64. Dagdelen, J., Montoya, J., de Jong, M., Persson, K.: Computational prediction of new auxetic materials. Nat. Commun. 8, 323 (2017). https://doi.org/10.1038/s41467-017-00399-6

    Article  Google Scholar 

  65. Kolken, H.M.A., Zadpoor, A.A.: Auxetic mechanical metamaterials. RSC Adv. 7, 5111–5129 (2017). https://doi.org/10.1039/C6RA27333E

    Article  Google Scholar 

  66. Carneiro, V.H., Meireles, J., Puga, H.: Auxetic materials—a review. Mater. Sci. 31, 561–571 (2013). https://doi.org/10.2478/s13536-013-0140-6

    Article  Google Scholar 

  67. Mir, M., Ali, M.N., Sami, J., Ansari, U.: Review of mechanics and applications of auxetic structures. Adv. Mater. Sci. Eng. 2014 (2014). https://doi.org/10.1155/2014/753496

  68. Tachi, T.: Designing freeform origami tessellations by generalizing Resch’s patterns. J. Mech. Des. 135, 111006 (2013). https://doi.org/10.1115/1.4025389

    Article  Google Scholar 

  69. Chu, C.C., Keong, C.K.: The review on tessellation origami inspired folded structure. In: AIP Conference Proceedings, p. 020025. AIP Publishing LLC (2017)

    Google Scholar 

  70. Chu, C.C., Keong, C.K.: Modeling of rigid origami tessellation using generative algorithm tool. J. Built. Environ. 2, 18–25 (2017)

    Google Scholar 

  71. Lv, C., Krishnaraju, D., Konjevod, G., et al.: Origami based mechanical metamaterials. Sci. Rep. 4, 5979 (2015). https://doi.org/10.1038/srep05979

    Article  Google Scholar 

  72. Melchels, F.P.W., Feijen, J., Grijpma, D.W.: A poly(d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30, 3801–3809 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.055

    Article  Google Scholar 

  73. Melchels, F.P.W., Bertoldi, K., Gabbrielli, R., et al.: Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31, 6909–6916 (2010). https://doi.org/10.1016/j.biomaterials.2010.05.068

    Article  Google Scholar 

  74. Kerbrat, O., Mognol, P., Hascoët, J.-Y.: A new DFM approach to combine machining and additive manufacturing. Comput. Ind. 62(7), 684–692 (2011). https://doi.org/10.1016/j.compind.2011.04.003

  75. Liu, J., To, A.C.: Topology optimization for hybrid additive-subtractive manufacturing. Struct. Multidiscip. Optim. 55, 1281–1299 (2017). https://doi.org/10.1007/s00158-016-1565-4

    Article  MathSciNet  Google Scholar 

  76. Afsharizand, B., Nassehi, A., Dhokia, V., Newman, S.T.: Formal modelling of process planning in combined additive and subtractive manufacturing. Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 171–176. Springer, Cham (2014)

    Chapter  Google Scholar 

  77. Le, V.T., Paris, H., Mandil, G.: Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J. Manuf. Syst. 44, 243–254 (2017). https://doi.org/10.1016/J.JMSY.2017.06.003

    Article  Google Scholar 

  78. Vaughan, M.R., Crawford, R.H.: Effectiveness of virtual models in design for additive manufacturing: a laser sintering case study. Rapid Prototyp. J. 19, 11–19 (2013). https://doi.org/10.1108/13552541311292682

    Article  Google Scholar 

  79. Jørgensen, A.: Social LCA—a way ahead? Int. J. Life Cycle Assess. 18, 296–299 (2013). https://doi.org/10.1007/s11367-012-0517-5

    Article  Google Scholar 

  80. Benoît, C., Mazijn, B.: UNEP/SETAC life cycle initiative—guidelines for social life cycle assessment of products. United Nations Environ. Program 15, 104 (2009). https://doi.org/DTI/1164/PA

    Google Scholar 

  81. Parent, J., Cucuzzella, C., Revéret, J.-P.: Revisiting the role of LCA and SLCA in the transition towards sustainable production and consumption. Int. J. Life Cycle Assess. 18, 1642–1652 (2013). https://doi.org/10.1007/s11367-012-0485-9

    Article  Google Scholar 

  82. Kohtala, C., Hyysalo, S.: Anticipated environmental sustainability of personal fabrication. J. Clean. Prod. 99, 333–344 (2015). https://doi.org/10.1016/J.JCLEPRO.2015.02.093

    Article  Google Scholar 

  83. Jiang, R., Kleer, R., Piller, F.T.: Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol. Forecast Soc. Change 117, 84–97 (2017). https://doi.org/10.1016/J.TECHFORE.2017.01.006

    Article  Google Scholar 

  84. Ford, S., Despeisse, M.: Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016). https://doi.org/10.1016/J.JCLEPRO.2016.04.150

    Article  Google Scholar 

  85. Chen, D., Heyer, S., Ibbotson, S., et al.: Direct digital manufacturing: definition, evolution, and sustainability implications. J. Clean. Prod. 107, 615–625 (2015). https://doi.org/10.1016/J.JCLEPRO.2015.05.009

    Article  Google Scholar 

  86. Huang, S.H., Liu, P., Mokasdar, A., Hou, L.: Additive manufacturing and its societal impact: a literature review. Int. J. Adv. Manuf. Technol. 67, 1191–1203 (2013). https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  87. Matos, F., Jacinto, C.: Additive manufacturing technology: mapping social impacts. J. Manuf. Technol. Manag. 30, 70–97 (2019). https://doi.org/10.1108/JMTM-12-2017-0263

    Article  Google Scholar 

  88. Deng, L., Babbitt, C.W., Williams, E.D.: Economic-balance hybrid LCA extended with uncertainty analysis: case study of a laptop computer. J. Clean. Prod. 19, 1198–1206 (2011). https://doi.org/10.1016/J.JCLEPRO.2011.03.004

    Article  Google Scholar 

  89. Gibon, T., Wood, R., Arvesen, A., et al.: A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environ. Sci. Technol. 49, 11218–11226 (2015). https://doi.org/10.1021/acs.est.5b01558

    Article  Google Scholar 

  90. Vaneker, T.H.J.: The role of design for additive manufacturing in the successful economical introduction of AM. Procedia CIRP 60, 181–186 (2017). https://doi.org/10.1016/J.PROCIR.2017.02.012

    Article  Google Scholar 

  91. Rebitzer, G., Hunkeler, D.: Life cycle costing in LCM: ambitions, opportunities, and limitations. Int. J. Life Cycle Assess. 8, 253–256 (2003). https://doi.org/10.1007/BF02978913

    Article  Google Scholar 

  92. Krozer, Y.: Life cycle costing for innovations in product chains. J. Clean. Prod. 16, 310–321 (2008). https://doi.org/10.1016/J.JCLEPRO.2006.07.040

    Article  Google Scholar 

  93. Shtub, A., Bard, J.F., Globerson, S.: Project Management: Processes, Methodologies, and Economics. Pearson Prentice Hall, Upper Saddle River, NJ (2005)

    Google Scholar 

  94. Lindemann, C., Jahnke, U., Moi, M., Koch, R.: Impact and influence factors of additive manufacturing on product lifecycle costs. In: SFF Symposium, International Solid Freeform Fabrication Symposium, pp. 998–1008 (2013)

    Google Scholar 

  95. Camp, R.C.: Benchmarking: The Search for Industry Best Practices That Lead to Superior Performance. Quality Press, Milwaukee, WI (1989)

    Google Scholar 

  96. ISO ISO 14040:2006—Environmental management—Life cycle assessment—Principles and framework

    Google Scholar 

  97. Franze, J.: LCA of an Ecolabeled Notebook—Consideration of Social and Environmental. Lulu.com (2011)

    Google Scholar 

  98. Watson, K.J., Evans, J., Karvonen, A., Whitley, T.: Capturing the social value of buildings: the promise of Social Return on Investment (SROI). Build. Environ. 103, 289–301 (2016). https://doi.org/10.1016/J.BUILDENV.2016.04.007

    Article  Google Scholar 

  99. Clark, J., Koopmans, C., Hof, B., et al.: Assessing the full effects of public investment in space. Space Policy 30, 121–134 (2014). https://doi.org/10.1016/J.SPACEPOL.2014.03.001

    Article  Google Scholar 

  100. Wits, W.W., García, J.R.R., Becker, J.M.J.: How additive manufacturing enables more sustainable end-user maintenance, repair and overhaul (MRO) strategies. Procedia CIRP 40, 693–698 (2016). https://doi.org/10.1016/J.PROCIR.2016.01.156

    Article  Google Scholar 

  101. Gebler, M., Schoot Uiterkamp, A.J.M., Visser, C.: A global sustainability perspective on 3D printing technologies. Energy Policy 74, 158–167 (2014). https://doi.org/10.1016/J.ENPOL.2014.08.033

    Article  Google Scholar 

  102. Rebitzer, G., Ekvall, T., Frischknecht, R., et al.: Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30, 701–720 (2004). https://doi.org/10.1016/J.ENVINT.2003.11.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Peças .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vicente, C.M.S. et al. (2020). Design and Modelling Approaches. In: Torres Marques, A., Esteves, S., Pereira, J., Oliveira, L. (eds) Additive Manufacturing Hybrid Processes for Composites Systems. Advanced Structured Materials, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-44522-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44522-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44521-8

  • Online ISBN: 978-3-030-44522-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics