Skip to main content

Development of a Constitutive Model to Predict the Elasto-Plastic Behaviour of 3D-Printed Thermoplastics: A Meshless Formulation

  • Chapter
  • First Online:
Additive Manufacturing Hybrid Processes for Composites Systems

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 129))

Abstract

Fused filament fabrication (FFF) is a low-cost 3D printing technology that allows the production of components and structures with complex geometries, which cannot be achieved by traditional manufacturing processes. Nonetheless, this additive technique is not extensively used in high-value industrial sectors, mainly due to parts’ anisotropy related to deposition strategy and residual stresses caused by successive heating cycles. These features have a great influence on the mechanical performance of 3D-printed parts, in particular, thermoplastics with nonlinear behaviour (such as PLA or PA). Thus, engineering approaches to predict these elasto-plastic responses are demanded. In this work, the tensile and compression behaviours of FFF thermoplastics are investigated using a yield criterion that accounts, simultaneously, the presence of tensile and compressive loads applied on the material (a modified Hill yield criterion). The developed elasto-plastic algorithm, which uses the incremental-iterative Newton–Raphson method, is implemented within the formulation of a meshless method. Despite the use of the finite element method (FEM) for engineering applications have become widespread, new accurate and efficient discrete advanced numerical techniques—such as meshless methods (Belinha in Meshless methods in biomechanics: bone tissue remodelling analysis. Springer International Publishing, Porto, 2013 [1])—can handle the same kind of problems as the FEM and being, in some cases, even more efficient. To discretize the problem domain, meshless methods only require an unstructured nodal distribution. The numerical integration of the Galerkin weak form is performed using a background integration mesh, the nodal connectivity is enforced using the influence-domain concept and then the interpolation shape functions are obtained. In order to validate the numerical proposed algorithm, standardized tensile and compressive specimens were printed and tested. Then, using the material properties extracted from the experimental tests, a benchmark example was studied for the sake of model proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steuben, J.C., Iliopoulos, A.P., Michopoulos, J.G.: Discrete element modeling of particle-based additive manufacturing processes. Comput. Methods Appl. Mech. Eng. [Internet] 305, 537–561 (2016). Available from http://linkinghub.elsevier.com/retrieve/pii/S0045782516300536

  2. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., et al.: The status, challenges, and future of additive manufacturing in engineering. Comput Des [Internet]. 69, 65–89 (2015). Available from http://www.sciencedirect.com/science/article/pii/S0010448515000469

  3. Joaquim, C.: New opportunities and challenges for additive manufacturing to produce biomedical devices [Internet]. IFAC Proc. Vol. (2013). Available from http://www.scopus.com/inward/record.url?eid=2-s2.0-84885793480&partnerID=tZOtx3y1

  4. Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., et al.: Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. Manuf. Technol. [Internet] (2016). Available from http://linkinghub.elsevier.com/retrieve/pii/S0007850616301913

  5. Hossain, M.S., Gonzalez, J.A., Hernandez, R.M., Shuvo, MAI., Mireles J, Choudhuri A, et al.: Fabrication of smart parts using powder bed fusion additive manufacturing technology. Addit. Manuf. [Internet] 10:58–66 (2016). Available from http://doi.org/10.1016/j.addma.2016.01.001

  6. Salinas, R.: 3D Printing with RepRap Cookbook [Internet] (2014). Available from https://www.packtpub.com/hardware-and-creative/3d-printing-reprap-cookbook

  7. De Ciurana, J., Serenó, L., Vallès, È.: Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. Procedia CIRP 5, 152–157 (2013)

    Article  Google Scholar 

  8. Appelsved, P.: Investigation of mechanical properties of thermoplastics with implementations of LS-DYNA material models. Degree Proj. Solid Mech. 48 (2012)

    Google Scholar 

  9. Belinha, J.: Meshless methods in biomechanics - bone tissue remodelling analysis. In: Lecture Notes in Computational Vision and Biomechanics, vol.16, Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-06400-0

  10. Duarte, H.M.S., Andrade, J.R., Dinis, L.M.J.S., Jorge, R.M.N., Belinha, J.: Numerical analysis of dental implants using a new advanced discretization technique. Mech. Adv. Mater. Struct. [Internet] 23, 467–79 (2015). Available from http://www.tandfonline.com/doi/abs/10.1080/15376494.2014.987410

  11. Qian, X., Yuan, H., Zhou, M., Zhang, B.: A general 3D contact smoothing method based on radial point interpolation. J. Comput. Appl. Math. [Internet] 257, 1–13 (2014). Available from http://www.sciencedirect.com/science/article/pii/S0377042713004196

  12. Azevedo, J.M.C., Belinha, J., Dinis, L.M.J.S., Natal Jorge, R.M.: Crack path prediction using the natural neighbour radial point interpolation method. Eng. Anal. Bound. Elem. [Internet] 59, 144–158 (2015). Available from: http://dx.doi.org/10.1016/j.enganabound.2015.06.001

  13. Nguyen, N.T., Bui, T.Q., Zhang, C., Truong, T.T.: Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method. Eng. Anal. Bound. Elem. [Internet] 44, 87–97 (2014). Available from http://www.sciencedirect.com/science/article/pii/S0955799714000988

  14. Farahani, B.V., Belinha, J., Andrade Pires, F.M., Ferreira, A.J.M., Moreira, P.M.G.P.: Extending a radial point interpolation meshless method to non-local constitutive damage models. Theor. Appl. Fract. Mech. [Internet] 85, Part A, 84–98 (2016). Available from http://www.sciencedirect.com/science/article/pii/S0167844216301100

  15. Belinha, J.: Meshless methods in biomechanics: bone tissue remodelling analysis. In: Tavares, J.M.R.S., Natal Jorge, R.M. (eds.), Lecture Notes in Computational Vision and Biomechanics, vol. 8. Springer International Publishing, Porto (2014)

    Google Scholar 

  16. Dinis, L.M.J.S., Natal Jorge, R.M., Belinha, J.: The radial natural neighbours interpolators extended to elastoplasticity. Prog. Meshless Methods Comput. Methods Appl. Sci. [Internet] 175–198 (2009). Available from http://link.springer.com/chapter/10.1007/978-1-4020-8821-6_11

  17. Dai, K.Y., Liu, G.R., Han, X., Li, Y.: Inelastic analysis of 2D solids using a weak-form RPIM based on deformation theory. Comput. Methods Appl. Mech. Eng. [Internet] 195, 4179–4193 (2006). Available from http://www.sciencedirect.com/science/article/pii/S0045782505004135

  18. Belinha, J., Araújo, A.L., Ferreira, A.J.M., Dinis, L.M.J.S., Jorge, R.M.N.: The analysis of laminated plates using distinct advanced discretization meshless techniques. Compos. Struct. [Internet] 143, 165–179 (2016). Available from http://dx.doi.org/10.1016/j.compstruct.2016.02.021

  19. Belinha, J., Dinis, L.M.J.S., Natal Jorge, R.M.: Analysis of thick plates by the natural radial element method. Int. J. Mech. Sci. [Internet] 76, 33–48 (2013). Available from http://www.sciencedirect.com/science/article/pii/S0020740313002233

  20. Phan-Dao, H.-H.: A meshfree radial point interpolation method for free vibration of laminated composite plates analysis based on layerwise theory. Procedia Eng. 142, 349–356 (2016)

    Article  Google Scholar 

  21. Pilafkan, R., Folkow, P.D., Darvizeh, M., Darvizeh, A.: Three dimensional frequency analysis of bidirectional functionally graded thick cylindrical shells using a radial point interpolation method (RPIM). Eur. J. Mech. A/Solids [Internet] 39, 26–34 (2013). Available from http://www.sciencedirect.com/science/article/pii/S0997753812001180

  22. Phan-Dao, H.-H., Thai, C.H., Lee, J., Nguyen-Xuan, H.: Analysis of laminated composite and sandwich plate structures using generalized layerwise HSDT and improved meshfree radial point interpolation method. Aerosp. Sci. Technol. [Internet] 58, 641–660 (2016). Available from http://www.sciencedirect.com/science/article/pii/S1270963816307040

  23. Wang, R., Zhang, L., Hu, D., Liu, C., Shen, X., Cho, C., et al.: A novel approach to impose periodic boundary condition on braided composite RVE model based on RPIM. Compos. Struct. [Internet] 163, 77–88 (2017). Available from http://www.sciencedirect.com/science/article/pii/S026382231631710X

  24. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., et al.: RepRap—the replicating rapid prototyper. Robotica [Internet] 29, 177–191 (2011, January 14). Available from https://www.cambridge.org/core/article/reprap-the-replicating-rapid-prototyper/5979FD7B0C066CBCE43EEAD869E871AA

  25. Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002)

    Article  Google Scholar 

  26. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl. 19, 163–208 (1990)

    Article  MathSciNet  Google Scholar 

  27. Hardy, R.L.: Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988. Comput. Math. Appl. [Internet] 19, 163–208 (1990). Available from http://www.sciencedirect.com/science/article/pii/089812219090272L

  28. Belinha, J., Dinis, L.M.J.S., Jorge, R.M.N.: The natural neighbour radial point interpolation method: solid mechanics and mechanobiology applications. Faculdade de Engenharia da Universidade do Porto (2010)

    Google Scholar 

  29. Belinha, J., Dinis, L.M.J.S., Jorge, R.M.N.: The natural radial element method. 1286–1313 (2013)

    Google Scholar 

  30. Hill, R.: The Mathematical Theory of Plasticity. Oxford classic texts in the physical sciences, 2nd edn. (Nov 12, 1998), ISBN-10: 0198503679, Oxford University Press, U.S.A.

    MATH  Google Scholar 

  31. Liu, C.: On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study. Acta Mater. [Internet] 45, 2397–2406 (1997). Available from http://linkinghub.elsevier.com/retrieve/pii/S1359645496003497

  32. De Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear finite element analysis of solids and structures. Wiley Ser. Comput. Mech. (2012)

    Google Scholar 

  33. Belinha, J.: FEMAS software [Internet]. http://cmech.webs.com. Available from http://cmech.webs.com

  34. Jerabek, M., Tscharnuter, D., Major, Z., Ravi-Chandar, K., Lang, R.: Multiaxial yield behaviour of polypropylene. EPJ Web. Conf. 6, 03005 (2010)

    Google Scholar 

  35. Ramberg, W., Osgood, W.R.: Description of stress-strain curves by three parameters (1943)

    Google Scholar 

Download references

Acknowledgements

The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e Ensino Superior—Fundação para a Ciência e a Tecnologia (Portugal), under grant SFRH/BD/121019/2016, and by project funding MIT-EXPL/ISF/0084/2017. Additionally, the authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022—SciTech—Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Belinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, D., Belinha, J., Jorge, R.N., Dinis, L. (2020). Development of a Constitutive Model to Predict the Elasto-Plastic Behaviour of 3D-Printed Thermoplastics: A Meshless Formulation. In: Torres Marques, A., Esteves, S., Pereira, J., Oliveira, L. (eds) Additive Manufacturing Hybrid Processes for Composites Systems. Advanced Structured Materials, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-44522-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44522-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44521-8

  • Online ISBN: 978-3-030-44522-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics